Spaces:
Runtime error
Runtime error
File size: 2,527 Bytes
3f49524 1b8dd33 3f49524 1b8dd33 84a7335 1b8dd33 3f49524 1158018 1152b2a 072f63a efa0dd9 6f062c5 1158018 6f062c5 1158018 072f63a 6f062c5 610bb32 1158018 6f062c5 3f49524 6f062c5 1158018 6f062c5 3f49524 6f062c5 3f49524 072f63a 3f49524 610bb32 3f49524 6f062c5 3f49524 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
import gradio as gr
import pandas as pd
from transformers import BertTokenizer, BertForSequenceClassification
import torch
from datasets import load_dataset
# Load pre-trained TinyBERT model and tokenizer
tokenizer = BertTokenizer.from_pretrained('huawei-noah/TinyBERT_General_4L_312D')
model = BertForSequenceClassification.from_pretrained('huawei-noah/TinyBERT_General_4L_312D')
# Load dataset from Hugging Face repository
# Replace 'your-username' and 'your-dataset-name' with actual values
dataset = load_dataset('SharmaAmit1818/data_analysis/blob/main', data_files='data-qQeu1Z0CfsuqRUaDagRA1 (1).csv')
# Function to process the CSV file and generate predictions
def process_csv(file):
try:
# Read the CSV file using Pandas directly from the uploaded file object
df = pd.read_csv(file) # Use the file object directly
# Debugging: Print the DataFrame shape and columns
print(f"DataFrame shape: {df.shape}")
print(f"DataFrame columns: {df.columns.tolist()}")
# Check for 'text' column
if 'text' not in df.columns:
return "Error: The CSV file must contain a 'text' column."
# Tokenize input text
inputs = tokenizer(df['text'].tolist(), return_tensors='pt', padding=True, truncation=True)
# Perform inference
with torch.no_grad():
outputs = model(**inputs)
# Get predicted classes
_, predicted_classes = torch.max(outputs.logits, dim=1)
# Add predictions to DataFrame
df['predicted_class'] = predicted_classes.numpy()
# Return processed DataFrame as CSV string
return df.to_csv(index=False)
except FileNotFoundError:
return "Error: The specified file was not found. Please check your upload."
except pd.errors.EmptyDataError:
return "Error: The uploaded file is empty."
except pd.errors.ParserError:
return "Error: There was an issue parsing the CSV file."
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
# Create Gradio interface
input_csv = gr.File(label="Upload CSV File")
output_csv = gr.File(label="Download Processed CSV")
demo = gr.Interface(
fn=process_csv,
inputs=input_csv,
outputs=output_csv,
title="CSV Data Processing with TinyBERT",
description="Upload a CSV file with a 'text' column, and the model will process the data and provide predictions."
)
# Launch Gradio interface
demo.launch() |