Shirish15's picture
Create app.py
99ceffb verified
raw
history blame
939 Bytes
import gradio as gr
from transformers import pipeline
# Initialize the summarization pipeline
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") # You can choose other models
def summarize_text(text):
"""Summarizes the given text using the pre-trained model."""
try:
summary = summarizer(text, max_length=150, min_length=30, do_sample=False)[0]['summary_text'] # Adjust max and min length as needed
return summary
except Exception as e:
return f"Error during summarization: {str(e)}"
# Create the Gradio interface
iface = gr.Interface(
fn=summarize_text,
inputs=gr.Textbox(lines=5, label="Nepali Text to Summarize"),
outputs=gr.Textbox(lines=5, label="Summary"),
title="Nepali Text Summarizer",
description="Enter Nepali text and get a concise summary using a pre-trained NLP model.",
allow_flagging=False
)
if __name__ == "__main__":
iface.launch()