Spaces:
Paused
Paused
import os | |
import json | |
import re | |
import gradio as gr | |
import pandas as pd | |
import requests | |
import random | |
import urllib.parse | |
from tempfile import NamedTemporaryFile | |
from typing import List, Dict | |
from bs4 import BeautifulSoup | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import LLMChain | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.llms import HuggingFaceHub | |
from langchain_core.documents import Document | |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN") | |
class Agent1: | |
def __init__(self, model): | |
self.model = model | |
def rephrase_and_split(self, user_input: str) -> List[str]: | |
rephrase_prompt = PromptTemplate( | |
input_variables=["query"], | |
template=""" | |
Your task is to rephrase the given query into one or more concise, search-engine-friendly formats. | |
If the query contains multiple distinct questions, split them. | |
Provide ONLY the rephrased queries without any additional text or explanations, one per line. | |
Query: {query} | |
Rephrased queries:""" | |
) | |
chain = LLMChain(llm=self.model, prompt=rephrase_prompt) | |
response = chain.run(query=user_input).strip() | |
return [q.strip() for q in response.split('\n') if q.strip()] | |
def process(self, user_input: str) -> Dict[str, List[Dict[str, str]]]: | |
queries = self.rephrase_and_split(user_input) | |
results = {} | |
for query in queries: | |
results[query] = google_search(query) | |
return results | |
class Agent2: | |
def __init__(self, model): | |
self.model = model | |
def validate_response(self, user_query: str, response: str) -> bool: | |
validation_prompt = PromptTemplate( | |
input_variables=["query", "response"], | |
template=""" | |
Evaluate if the following response fully answers the user's query. | |
User query: {query} | |
Response: {response} | |
Does the response fully answer the query? Answer with Yes or No:""" | |
) | |
chain = LLMChain(llm=self.model, prompt=validation_prompt) | |
result = chain.run(query=user_query, response=response).strip().lower() | |
return result == 'yes' | |
def generate_follow_up_query(self, user_query: str, response: str) -> str: | |
follow_up_prompt = PromptTemplate( | |
input_variables=["query", "response"], | |
template=""" | |
The following response did not fully answer the user's query. | |
User query: {query} | |
Response: {response} | |
Generate a follow-up query to get more relevant information:""" | |
) | |
chain = LLMChain(llm=self.model, prompt=follow_up_prompt) | |
return chain.run(query=user_query, response=response).strip() | |
def load_document(file: NamedTemporaryFile) -> List[Document]: | |
"""Loads and splits the document into pages.""" | |
loader = PyPDFLoader(file.name) | |
return loader.load_and_split() | |
def update_vectors(files): | |
if not files: | |
return "Please upload at least one PDF file." | |
embed = get_embeddings() | |
total_chunks = 0 | |
all_data = [] | |
for file in files: | |
data = load_document(file) | |
all_data.extend(data) | |
total_chunks += len(data) | |
if os.path.exists("faiss_database"): | |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
database.add_documents(all_data) | |
else: | |
database = FAISS.from_documents(all_data, embed) | |
database.save_local("faiss_database") | |
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files." | |
def get_embeddings(): | |
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
def clear_cache(): | |
if os.path.exists("faiss_database"): | |
os.remove("faiss_database") | |
return "Cache cleared successfully." | |
else: | |
return "No cache to clear." | |
def get_model(temperature, top_p, repetition_penalty): | |
return HuggingFaceHub( | |
repo_id="mistralai/Mistral-7B-Instruct-v0.3", | |
model_kwargs={ | |
"temperature": temperature, | |
"top_p": top_p, | |
"repetition_penalty": repetition_penalty, | |
"max_length": 1000 | |
}, | |
huggingfacehub_api_token=huggingface_token | |
) | |
def generate_chunked_response(model, prompt, max_tokens=1000, max_chunks=5): | |
full_response = "" | |
for i in range(max_chunks): | |
try: | |
chunk = model(prompt + full_response, max_new_tokens=max_tokens) | |
chunk = chunk.strip() | |
if chunk.endswith((".", "!", "?")): | |
full_response += chunk | |
break | |
full_response += chunk | |
except Exception as e: | |
print(f"Error in generate_chunked_response: {e}") | |
break | |
return full_response.strip() | |
def extract_text_from_webpage(html): | |
soup = BeautifulSoup(html, 'html.parser') | |
for script in soup(["script", "style"]): | |
script.extract() | |
text = soup.get_text() | |
lines = (line.strip() for line in text.splitlines()) | |
chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) | |
text = '\n'.join(chunk for chunk in chunks if chunk) | |
return text | |
_useragent_list = [ | |
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", | |
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", | |
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", | |
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", | |
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", | |
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", | |
] | |
def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None): | |
escaped_term = urllib.parse.quote_plus(term) | |
start = 0 | |
all_results = [] | |
max_chars_per_page = 8000 | |
print(f"Starting Google search for term: '{term}'") | |
with requests.Session() as session: | |
while start < num_results: | |
try: | |
user_agent = random.choice(_useragent_list) | |
headers = { | |
'User-Agent': user_agent | |
} | |
resp = session.get( | |
url="https://www.google.com/search", | |
headers=headers, | |
params={ | |
"q": term, | |
"num": num_results - start, | |
"hl": lang, | |
"start": start, | |
"safe": safe, | |
}, | |
timeout=timeout, | |
verify=ssl_verify, | |
) | |
resp.raise_for_status() | |
print(f"Successfully retrieved search results page (start={start})") | |
except requests.exceptions.RequestException as e: | |
print(f"Error retrieving search results: {e}") | |
break | |
soup = BeautifulSoup(resp.text, "html.parser") | |
result_block = soup.find_all("div", attrs={"class": "g"}) | |
if not result_block: | |
print("No results found on this page") | |
break | |
print(f"Found {len(result_block)} results on this page") | |
for result in result_block: | |
link = result.find("a", href=True) | |
if link: | |
link = link["href"] | |
print(f"Processing link: {link}") | |
try: | |
webpage = session.get(link, headers=headers, timeout=timeout) | |
webpage.raise_for_status() | |
visible_text = extract_text_from_webpage(webpage.text) | |
if len(visible_text) > max_chars_per_page: | |
visible_text = visible_text[:max_chars_per_page] + "..." | |
all_results.append({"link": link, "text": visible_text}) | |
print(f"Successfully extracted text from {link}") | |
except requests.exceptions.RequestException as e: | |
print(f"Error retrieving webpage content: {e}") | |
all_results.append({"link": link, "text": None}) | |
else: | |
print("No link found for this result") | |
all_results.append({"link": None, "text": None}) | |
start += len(result_block) | |
print(f"Search completed. Total results: {len(all_results)}") | |
if not all_results: | |
print("No search results found. Returning a default message.") | |
return [{"link": None, "text": "No information found in the web search results."}] | |
return all_results | |
def rephrase_for_search(query, model): | |
rephrase_prompt = PromptTemplate( | |
input_variables=["query"], | |
template=""" | |
Your task is to rephrase the given conversational query into a concise, search-engine-friendly format. | |
Remove any conversational elements and focus on the core information need. | |
Provide ONLY the rephrased query without any additional text or explanations. | |
Conversational query: {query} | |
Rephrased query:""" | |
) | |
chain = LLMChain(llm=model, prompt=rephrase_prompt) | |
response = chain.run(query=query).strip() | |
rephrased_query = response.replace("Rephrased query:", "").strip() | |
if rephrased_query.lower() == query.lower() or len(rephrased_query) > len(query) * 1.5: | |
common_words = set(['the', 'a', 'an', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'from', 'up', 'about', 'into', 'over', 'after']) | |
keywords = [word.lower() for word in query.split() if word.lower() not in common_words] | |
keywords = [word for word in keywords if word.isalnum()] | |
return ' '.join(keywords) | |
return rephrased_query | |
def ask_question(question, temperature, top_p, repetition_penalty, web_search): | |
if not question: | |
return "Please enter a question." | |
model = get_model(temperature, top_p, repetition_penalty) | |
embed = get_embeddings() | |
agent1 = Agent1(model) | |
agent2 = Agent2(model) | |
if os.path.exists("faiss_database"): | |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
else: | |
database = None | |
max_attempts = 3 | |
context_reduction_factor = 0.7 | |
for attempt in range(max_attempts): | |
try: | |
if web_search: | |
search_results = agent1.process(question) | |
web_docs = [] | |
for query, results in search_results.items(): | |
web_docs.extend([Document(page_content=result["text"], metadata={"source": result["link"], "query": query}) for result in results if result["text"]]) | |
if database is None: | |
database = FAISS.from_documents(web_docs, embed) | |
else: | |
database.add_documents(web_docs) | |
database.save_local("faiss_database") | |
context_str = "\n".join([f"Query: {doc.metadata['query']}\nSource: {doc.metadata['source']}\nContent: {doc.page_content}" for doc in web_docs]) | |
prompt_template = """ | |
Answer the question based on the following web search results: | |
Web Search Results: | |
{context} | |
Original Question: {question} | |
If the web search results don't contain relevant information, state that the information is not available in the search results. | |
Provide a concise and direct answer to the original question without mentioning the web search or these instructions. | |
Do not include any source information in your answer. | |
""" | |
else: | |
if database is None: | |
return "No documents available. Please upload documents or enable web search to answer questions." | |
retriever = database.as_retriever() | |
relevant_docs = retriever.get_relevant_documents(question) | |
context_str = "\n".join([doc.page_content for doc in relevant_docs]) | |
if attempt > 0: | |
words = context_str.split() | |
context_str = " ".join(words[:int(len(words) * context_reduction_factor)]) | |
prompt_template = """ | |
Answer the question based on the following context: | |
Context: | |
{context} | |
Current Question: {question} | |
If the context doesn't contain relevant information, state that the information is not available. | |
Provide a concise and direct answer to the question. | |
Do not include any source information in your answer. | |
""" | |
prompt_val = ChatPromptTemplate.from_template(prompt_template) | |
formatted_prompt = prompt_val.format(context=context_str, question=question) | |
full_response = generate_chunked_response(model, formatted_prompt) | |
answer_patterns = [ | |
r"Provide a concise and direct answer to the question without mentioning the web search or these instructions:", | |
r"Provide a concise and direct answer to the question:", | |
r"Answer:", | |
r"Provide a concise and direct answer to the original question without mentioning the web search or these instructions:", | |
r"Do not include any source information in your answer." | |
] | |
for pattern in answer_patterns: | |
match = re.split(pattern, full_response, flags=re.IGNORECASE) | |
if len(match) > 1: | |
answer = match[-1].strip() | |
break | |
else: | |
answer = full_response.strip() | |
if not agent2.validate_response(question, answer): | |
follow_up_query = agent2.generate_follow_up_query(question, answer) | |
follow_up_results = agent1.process(follow_up_query) | |
follow_up_docs = [Document(page_content=result["text"], metadata={"source": result["link"], "query": follow_up_query}) for results in follow_up_results.values() for result in results if result["text"]] | |
database.add_documents(follow_up_docs) | |
context_str += "\n" + "\n".join([f"Follow-up Query: {doc.metadata['query']}\nSource: {doc.metadata['source']}\nContent: {doc.page_content}" for doc in follow_up_docs]) | |
formatted_prompt = prompt_val.format(context=context_str, question=question) | |
full_response = generate_chunked_response(model, formatted_prompt) | |
answer = full_response.strip() | |
if web_search: | |
sources = set(doc.metadata['source'] for doc in web_docs) | |
sources_section = "\n\nSources:\n" + "\n".join(f"- {source}" for source in sources) | |
answer += sources_section | |
return answer | |
except Exception as e: | |
print(f"Error in ask_question (attempt {attempt + 1}): {e}") | |
if "Input validation error" in str(e) and attempt < max_attempts - 1: | |
print(f"Reducing context length for next attempt") | |
elif attempt == max_attempts - 1: | |
return f"I apologize, but I'm having trouble processing your question due to its length or complexity. Could you please try rephrasing it more concisely?" | |
return "An unexpected error occurred. Please try again later." | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Chat with your PDF documents and Web Search") | |
with gr.Row(): | |
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"]) | |
update_button = gr.Button("Upload PDF") | |
update_output = gr.Textbox(label="Update Status") | |
update_button.click(update_vectors, inputs=[file_input], outputs=update_output) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
chatbot = gr.Chatbot(label="Conversation") | |
question_input = gr.Textbox(label="Perplexity AI lite, enable web search to retrieve any web search results. Feel free to provide any feedbacks.") | |
submit_button = gr.Button("Submit") | |
with gr.Column(scale=1): | |
temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1) | |
top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1) | |
repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1) | |
web_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False) | |
def chat(question, history, temperature, top_p, repetition_penalty, web_search): | |
answer = ask_question(question, temperature, top_p, repetition_penalty, web_search) | |
history.append((question, answer)) | |
return "", history | |
submit_button.click(chat, inputs=[question_input, chatbot, temperature_slider, top_p_slider, repetition_penalty_slider, web_search_checkbox], outputs=[question_input, chatbot]) | |
clear_button = gr.Button("Clear Cache") | |
clear_output = gr.Textbox(label="Cache Status") | |
clear_button.click(clear_cache, inputs=[], outputs=clear_output) | |
if __name__ == "__main__": | |
demo.launch() |