Spaces:
Running
Running
File size: 18,074 Bytes
5090140 28ed44f 177c5b5 28ed44f 0c730b1 10660a7 bb706d3 8b05473 10660a7 8ac8380 28ed44f 0ccfbeb 28ed44f 8b05473 8ac8380 28ed44f 7f5b560 8b05473 0ccfbeb 8da6a04 ddc0536 0ccfbeb ddc0536 0ccfbeb ddc0536 0ccfbeb ddc0536 28ed44f 8da6a04 687c2f0 8da6a04 687c2f0 8da6a04 32fb8f8 8da6a04 4d152e0 8da6a04 4d152e0 d32ce41 646f8a3 d32ce41 8da6a04 10660a7 0ccfbeb 10660a7 94d22ca 10660a7 0ccfbeb 10660a7 1dc5b0f 10660a7 1dc5b0f 10660a7 1dc5b0f 10660a7 1dc5b0f 10660a7 1dc5b0f 10660a7 4d152e0 10660a7 1dc5b0f 10660a7 4d152e0 1dc5b0f 10660a7 1dc5b0f 4d152e0 10660a7 4d152e0 10660a7 1dc5b0f 0ccfbeb 8b01918 4d152e0 8b01918 10660a7 ac147b1 b5f8745 4c65765 b5f8745 ac147b1 b5f8745 4c65765 ac147b1 eac1164 ac147b1 cefe755 4c65765 b5f8745 4c65765 cefe755 ac147b1 0ccfbeb 8b01918 d23826b 8f325c3 8b05473 8b01918 4d152e0 d32ce41 b6683d4 8b05473 b6683d4 8b05473 b6683d4 8b05473 b6683d4 8b05473 b6683d4 7df2145 b6683d4 8b01918 8b05473 b6683d4 d8b3320 b6683d4 8da6a04 d32ce41 8b01918 28ed44f 0ccfbeb 8da6a04 0f075d7 8b01918 d613eb7 8b01918 0ccfbeb 8da6a04 0f075d7 8b01918 0eb6e86 8b01918 4b05267 0ccfbeb c86dfe0 0ccfbeb 4d152e0 8b01918 8da6a04 8b01918 697d921 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
import os
import json
import re
import gradio as gr
import pandas as pd
import requests
import random
import urllib.parse
from tempfile import NamedTemporaryFile
from typing import List, Dict
from bs4 import BeautifulSoup
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_core.output_parsers import StrOutputParser
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceHub
from langchain_core.documents import Document
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
class Agent1:
def __init__(self, model):
self.model = model
def rephrase_and_split(self, user_input: str) -> List[str]:
rephrase_prompt = PromptTemplate(
input_variables=["query"],
template="""
Your task is to rephrase the given query into one or more concise, search-engine-friendly formats.
If the query contains multiple distinct questions, split them.
Provide ONLY the rephrased queries without any additional text or explanations, one per line.
Query: {query}
Rephrased queries:"""
)
chain = LLMChain(llm=self.model, prompt=rephrase_prompt)
response = chain.run(query=user_input).strip()
return [q.strip() for q in response.split('\n') if q.strip()]
def process(self, user_input: str) -> Dict[str, List[Dict[str, str]]]:
queries = self.rephrase_and_split(user_input)
results = {}
for query in queries:
results[query] = google_search(query)
return results
class Agent2:
def __init__(self, model):
self.model = model
def validate_response(self, user_query: str, response: str) -> bool:
validation_prompt = PromptTemplate(
input_variables=["query", "response"],
template="""
Evaluate if the following response fully answers the user's query.
User query: {query}
Response: {response}
Does the response fully answer the query? Answer with Yes or No:"""
)
chain = LLMChain(llm=self.model, prompt=validation_prompt)
result = chain.run(query=user_query, response=response).strip().lower()
return result == 'yes'
def generate_follow_up_query(self, user_query: str, response: str) -> str:
follow_up_prompt = PromptTemplate(
input_variables=["query", "response"],
template="""
The following response did not fully answer the user's query.
User query: {query}
Response: {response}
Generate a follow-up query to get more relevant information:"""
)
chain = LLMChain(llm=self.model, prompt=follow_up_prompt)
return chain.run(query=user_query, response=response).strip()
def load_document(file: NamedTemporaryFile) -> List[Document]:
"""Loads and splits the document into pages."""
loader = PyPDFLoader(file.name)
return loader.load_and_split()
def update_vectors(files):
if not files:
return "Please upload at least one PDF file."
embed = get_embeddings()
total_chunks = 0
all_data = []
for file in files:
data = load_document(file)
all_data.extend(data)
total_chunks += len(data)
if os.path.exists("faiss_database"):
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
database.add_documents(all_data)
else:
database = FAISS.from_documents(all_data, embed)
database.save_local("faiss_database")
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files."
def get_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
def clear_cache():
if os.path.exists("faiss_database"):
os.remove("faiss_database")
return "Cache cleared successfully."
else:
return "No cache to clear."
def get_model(temperature, top_p, repetition_penalty):
return HuggingFaceHub(
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
model_kwargs={
"temperature": temperature,
"top_p": top_p,
"repetition_penalty": repetition_penalty,
"max_length": 1000
},
huggingfacehub_api_token=huggingface_token
)
def generate_chunked_response(model, prompt, max_tokens=1000, max_chunks=5):
full_response = ""
for i in range(max_chunks):
try:
chunk = model(prompt + full_response, max_new_tokens=max_tokens)
chunk = chunk.strip()
if chunk.endswith((".", "!", "?")):
full_response += chunk
break
full_response += chunk
except Exception as e:
print(f"Error in generate_chunked_response: {e}")
break
return full_response.strip()
def extract_text_from_webpage(html):
soup = BeautifulSoup(html, 'html.parser')
for script in soup(["script", "style"]):
script.extract()
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = '\n'.join(chunk for chunk in chunks if chunk)
return text
_useragent_list = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
]
def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None):
escaped_term = urllib.parse.quote_plus(term)
start = 0
all_results = []
max_chars_per_page = 8000
print(f"Starting Google search for term: '{term}'")
with requests.Session() as session:
while start < num_results:
try:
user_agent = random.choice(_useragent_list)
headers = {
'User-Agent': user_agent
}
resp = session.get(
url="https://www.google.com/search",
headers=headers,
params={
"q": term,
"num": num_results - start,
"hl": lang,
"start": start,
"safe": safe,
},
timeout=timeout,
verify=ssl_verify,
)
resp.raise_for_status()
print(f"Successfully retrieved search results page (start={start})")
except requests.exceptions.RequestException as e:
print(f"Error retrieving search results: {e}")
break
soup = BeautifulSoup(resp.text, "html.parser")
result_block = soup.find_all("div", attrs={"class": "g"})
if not result_block:
print("No results found on this page")
break
print(f"Found {len(result_block)} results on this page")
for result in result_block:
link = result.find("a", href=True)
if link:
link = link["href"]
print(f"Processing link: {link}")
try:
webpage = session.get(link, headers=headers, timeout=timeout)
webpage.raise_for_status()
visible_text = extract_text_from_webpage(webpage.text)
if len(visible_text) > max_chars_per_page:
visible_text = visible_text[:max_chars_per_page] + "..."
all_results.append({"link": link, "text": visible_text})
print(f"Successfully extracted text from {link}")
except requests.exceptions.RequestException as e:
print(f"Error retrieving webpage content: {e}")
all_results.append({"link": link, "text": None})
else:
print("No link found for this result")
all_results.append({"link": None, "text": None})
start += len(result_block)
print(f"Search completed. Total results: {len(all_results)}")
if not all_results:
print("No search results found. Returning a default message.")
return [{"link": None, "text": "No information found in the web search results."}]
return all_results
def rephrase_for_search(query, model):
rephrase_prompt = PromptTemplate(
input_variables=["query"],
template="""
Your task is to rephrase the given conversational query into a concise, search-engine-friendly format.
Remove any conversational elements and focus on the core information need.
Provide ONLY the rephrased query without any additional text or explanations.
Conversational query: {query}
Rephrased query:"""
)
chain = LLMChain(llm=model, prompt=rephrase_prompt)
response = chain.run(query=query).strip()
rephrased_query = response.replace("Rephrased query:", "").strip()
if rephrased_query.lower() == query.lower() or len(rephrased_query) > len(query) * 1.5:
common_words = set(['the', 'a', 'an', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'from', 'up', 'about', 'into', 'over', 'after'])
keywords = [word.lower() for word in query.split() if word.lower() not in common_words]
keywords = [word for word in keywords if word.isalnum()]
return ' '.join(keywords)
return rephrased_query
def ask_question(question, temperature, top_p, repetition_penalty, web_search):
if not question:
return "Please enter a question."
model = get_model(temperature, top_p, repetition_penalty)
embed = get_embeddings()
agent1 = Agent1(model)
agent2 = Agent2(model)
if os.path.exists("faiss_database"):
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
else:
database = None
max_attempts = 3
context_reduction_factor = 0.7
for attempt in range(max_attempts):
try:
if web_search:
search_results = agent1.process(question)
web_docs = []
for query, results in search_results.items():
web_docs.extend([Document(page_content=result["text"], metadata={"source": result["link"], "query": query}) for result in results if result["text"]])
if database is None:
database = FAISS.from_documents(web_docs, embed)
else:
database.add_documents(web_docs)
database.save_local("faiss_database")
context_str = "\n".join([f"Query: {doc.metadata['query']}\nSource: {doc.metadata['source']}\nContent: {doc.page_content}" for doc in web_docs])
prompt_template = """
Answer the question based on the following web search results:
Web Search Results:
{context}
Original Question: {question}
If the web search results don't contain relevant information, state that the information is not available in the search results.
Provide a concise and direct answer to the original question without mentioning the web search or these instructions.
Do not include any source information in your answer.
"""
else:
if database is None:
return "No documents available. Please upload documents or enable web search to answer questions."
retriever = database.as_retriever()
relevant_docs = retriever.get_relevant_documents(question)
context_str = "\n".join([doc.page_content for doc in relevant_docs])
if attempt > 0:
words = context_str.split()
context_str = " ".join(words[:int(len(words) * context_reduction_factor)])
prompt_template = """
Answer the question based on the following context:
Context:
{context}
Current Question: {question}
If the context doesn't contain relevant information, state that the information is not available.
Provide a concise and direct answer to the question.
Do not include any source information in your answer.
"""
prompt_val = ChatPromptTemplate.from_template(prompt_template)
formatted_prompt = prompt_val.format(context=context_str, question=question)
full_response = generate_chunked_response(model, formatted_prompt)
answer_patterns = [
r"Provide a concise and direct answer to the question without mentioning the web search or these instructions:",
r"Provide a concise and direct answer to the question:",
r"Answer:",
r"Provide a concise and direct answer to the original question without mentioning the web search or these instructions:",
r"Do not include any source information in your answer."
]
for pattern in answer_patterns:
match = re.split(pattern, full_response, flags=re.IGNORECASE)
if len(match) > 1:
answer = match[-1].strip()
break
else:
answer = full_response.strip()
if not agent2.validate_response(question, answer):
follow_up_query = agent2.generate_follow_up_query(question, answer)
follow_up_results = agent1.process(follow_up_query)
follow_up_docs = [Document(page_content=result["text"], metadata={"source": result["link"], "query": follow_up_query}) for results in follow_up_results.values() for result in results if result["text"]]
database.add_documents(follow_up_docs)
context_str += "\n" + "\n".join([f"Follow-up Query: {doc.metadata['query']}\nSource: {doc.metadata['source']}\nContent: {doc.page_content}" for doc in follow_up_docs])
formatted_prompt = prompt_val.format(context=context_str, question=question)
full_response = generate_chunked_response(model, formatted_prompt)
answer = full_response.strip()
if web_search:
sources = set(doc.metadata['source'] for doc in web_docs)
sources_section = "\n\nSources:\n" + "\n".join(f"- {source}" for source in sources)
answer += sources_section
return answer
except Exception as e:
print(f"Error in ask_question (attempt {attempt + 1}): {e}")
if "Input validation error" in str(e) and attempt < max_attempts - 1:
print(f"Reducing context length for next attempt")
elif attempt == max_attempts - 1:
return f"I apologize, but I'm having trouble processing your question due to its length or complexity. Could you please try rephrasing it more concisely?"
return "An unexpected error occurred. Please try again later."
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Chat with your PDF documents and Web Search")
with gr.Row():
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
update_button = gr.Button("Upload PDF")
update_output = gr.Textbox(label="Update Status")
update_button.click(update_vectors, inputs=[file_input], outputs=update_output)
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(label="Conversation")
question_input = gr.Textbox(label="Perplexity AI lite, enable web search to retrieve any web search results. Feel free to provide any feedbacks.")
submit_button = gr.Button("Submit")
with gr.Column(scale=1):
temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1)
top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1)
repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1)
web_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False)
def chat(question, history, temperature, top_p, repetition_penalty, web_search):
answer = ask_question(question, temperature, top_p, repetition_penalty, web_search)
history.append((question, answer))
return "", history
submit_button.click(chat, inputs=[question_input, chatbot, temperature_slider, top_p_slider, repetition_penalty_slider, web_search_checkbox], outputs=[question_input, chatbot])
clear_button = gr.Button("Clear Cache")
clear_output = gr.Textbox(label="Cache Status")
clear_button.click(clear_cache, inputs=[], outputs=clear_output)
if __name__ == "__main__":
demo.launch() |