Spaces:
Paused
Paused
import os | |
import json | |
import re | |
import gradio as gr | |
import pandas as pd | |
import requests | |
import random | |
import urllib.parse | |
import spacy | |
from sklearn.metrics.pairwise import cosine_similarity | |
import numpy as np | |
from typing import List, Dict | |
from tempfile import NamedTemporaryFile | |
from bs4 import BeautifulSoup | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import LLMChain | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.llms import HuggingFaceHub | |
from langchain_core.documents import Document | |
from sentence_transformers import SentenceTransformer | |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN") | |
# Load spaCy model | |
nlp = spacy.load("en_core_web_sm") | |
# Load SentenceTransformer model | |
sentence_model = SentenceTransformer('paraphrase-MiniLM-L6-v2') | |
class EnhancedContextDrivenChatbot: | |
def __init__(self, history_size=10): | |
self.history = [] | |
self.history_size = history_size | |
self.entity_tracker = {} | |
def add_to_history(self, text): | |
self.history.append(text) | |
if len(self.history) > self.history_size: | |
self.history.pop(0) | |
# Update entity tracker | |
doc = nlp(text) | |
for ent in doc.ents: | |
if ent.label_ not in self.entity_tracker: | |
self.entity_tracker[ent.label_] = set() | |
self.entity_tracker[ent.label_].add(ent.text) | |
def get_context(self): | |
return " ".join(self.history) | |
def is_follow_up_question(self, question): | |
doc = nlp(question.lower()) | |
follow_up_indicators = set(['it', 'this', 'that', 'these', 'those', 'he', 'she', 'they', 'them']) | |
return any(token.text in follow_up_indicators for token in doc) | |
def extract_topics(self, text): | |
doc = nlp(text) | |
return [chunk.text for chunk in doc.noun_chunks] | |
def get_most_relevant_context(self, question): | |
if not self.history: | |
return question | |
# Create a combined context from history | |
combined_context = self.get_context() | |
# Get embeddings | |
context_embedding = sentence_model.encode([combined_context])[0] | |
question_embedding = sentence_model.encode([question])[0] | |
# Calculate similarity | |
similarity = cosine_similarity([context_embedding], [question_embedding])[0][0] | |
# If similarity is low, it might be a new topic | |
if similarity < 0.3: # This threshold can be adjusted | |
return question | |
# Otherwise, prepend the context | |
return f"{combined_context} {question}" | |
def process_question(self, question): | |
contextualized_question = self.get_most_relevant_context(question) | |
# Extract topics from the question | |
topics = self.extract_topics(question) | |
# Check if it's a follow-up question | |
if self.is_follow_up_question(question): | |
# If it's a follow-up, make sure to include previous context | |
contextualized_question = f"{self.get_context()} {question}" | |
# Add the new question to history | |
self.add_to_history(question) | |
return contextualized_question, topics, self.entity_tracker | |
def load_document(file: NamedTemporaryFile) -> List[Document]: | |
"""Loads and splits the document into pages.""" | |
loader = PyPDFLoader(file.name) | |
return loader.load_and_split() | |
def update_vectors(files): | |
if not files: | |
return "Please upload at least one PDF file." | |
embed = get_embeddings() | |
total_chunks = 0 | |
all_data = [] | |
for file in files: | |
data = load_document(file) | |
all_data.extend(data) | |
total_chunks += len(data) | |
if os.path.exists("faiss_database"): | |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
database.add_documents(all_data) | |
else: | |
database = FAISS.from_documents(all_data, embed) | |
database.save_local("faiss_database") | |
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files." | |
def get_embeddings(): | |
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
def clear_cache(): | |
if os.path.exists("faiss_database"): | |
os.remove("faiss_database") | |
return "Cache cleared successfully." | |
else: | |
return "No cache to clear." | |
def get_model(temperature, top_p, repetition_penalty): | |
return HuggingFaceHub( | |
repo_id="mistralai/Mistral-7B-Instruct-v0.3", | |
model_kwargs={ | |
"temperature": temperature, | |
"top_p": top_p, | |
"repetition_penalty": repetition_penalty, | |
"max_length": 1000 | |
}, | |
huggingfacehub_api_token=huggingface_token | |
) | |
def generate_chunked_response(model, prompt, max_tokens=1000, max_chunks=5): | |
full_response = "" | |
for i in range(max_chunks): | |
try: | |
chunk = model(prompt + full_response, max_new_tokens=max_tokens) | |
chunk = chunk.strip() | |
if chunk.endswith((".", "!", "?")): | |
full_response += chunk | |
break | |
full_response += chunk | |
except Exception as e: | |
print(f"Error in generate_chunked_response: {e}") | |
break | |
return full_response.strip() | |
def extract_text_from_webpage(html): | |
soup = BeautifulSoup(html, 'html.parser') | |
for script in soup(["script", "style"]): | |
script.extract() | |
text = soup.get_text() | |
lines = (line.strip() for line in text.splitlines()) | |
chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) | |
text = '\n'.join(chunk for chunk in chunks if chunk) | |
return text | |
_useragent_list = [ | |
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", | |
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", | |
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", | |
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", | |
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", | |
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", | |
] | |
def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None): | |
escaped_term = urllib.parse.quote_plus(term) | |
start = 0 | |
all_results = [] | |
max_chars_per_page = 8000 | |
print(f"Starting Google search for term: '{term}'") | |
with requests.Session() as session: | |
while start < num_results: | |
try: | |
user_agent = random.choice(_useragent_list) | |
headers = { | |
'User-Agent': user_agent | |
} | |
resp = session.get( | |
url="https://www.google.com/search", | |
headers=headers, | |
params={ | |
"q": term, | |
"num": num_results - start, | |
"hl": lang, | |
"start": start, | |
"safe": safe, | |
}, | |
timeout=timeout, | |
verify=ssl_verify, | |
) | |
resp.raise_for_status() | |
print(f"Successfully retrieved search results page (start={start})") | |
except requests.exceptions.RequestException as e: | |
print(f"Error retrieving search results: {e}") | |
break | |
soup = BeautifulSoup(resp.text, "html.parser") | |
result_block = soup.find_all("div", attrs={"class": "g"}) | |
if not result_block: | |
print("No results found on this page") | |
break | |
print(f"Found {len(result_block)} results on this page") | |
for result in result_block: | |
link = result.find("a", href=True) | |
if link: | |
link = link["href"] | |
print(f"Processing link: {link}") | |
try: | |
webpage = session.get(link, headers=headers, timeout=timeout) | |
webpage.raise_for_status() | |
visible_text = extract_text_from_webpage(webpage.text) | |
if len(visible_text) > max_chars_per_page: | |
visible_text = visible_text[:max_chars_per_page] + "..." | |
all_results.append({"link": link, "text": visible_text}) | |
print(f"Successfully extracted text from {link}") | |
except requests.exceptions.RequestException as e: | |
print(f"Error retrieving webpage content: {e}") | |
all_results.append({"link": link, "text": None}) | |
else: | |
print("No link found for this result") | |
all_results.append({"link": None, "text": None}) | |
start += len(result_block) | |
print(f"Search completed. Total results: {len(all_results)}") | |
if not all_results: | |
print("No search results found. Returning a default message.") | |
return [{"link": None, "text": "No information found in the web search results."}] | |
return all_results | |
def ask_question(question, temperature, top_p, repetition_penalty, web_search, chatbot): | |
if not question: | |
return "Please enter a question." | |
model = get_model(temperature, top_p, repetition_penalty) | |
embed = get_embeddings() | |
if os.path.exists("faiss_database"): | |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
else: | |
database = None | |
max_attempts = 3 | |
context_reduction_factor = 0.7 | |
contextualized_question, topics, entity_tracker = chatbot.process_question(question) | |
if web_search: | |
search_results = google_search(contextualized_question) | |
all_answers = [] | |
for attempt in range(max_attempts): | |
try: | |
web_docs = [Document(page_content=result["text"], metadata={"source": result["link"]}) for result in search_results if result["text"]] | |
if database is None: | |
database = FAISS.from_documents(web_docs, embed) | |
else: | |
database.add_documents(web_docs) | |
database.save_local("faiss_database") | |
context_str = "\n".join([f"Source: {doc.metadata['source']}\nContent: {doc.page_content}" for doc in web_docs]) | |
prompt_template = """ | |
Answer the question based on the following web search results, conversation context, and entity information: | |
Web Search Results: | |
{context} | |
Conversation Context: {conv_context} | |
Current Question: {question} | |
Topics: {topics} | |
Entity Information: {entities} | |
If the web search results don't contain relevant information, state that the information is not available in the search results. | |
Provide a summarized and direct answer to the question without mentioning the web search or these instructions. | |
Do not include any source information in your answer. | |
""" | |
prompt_val = ChatPromptTemplate.from_template(prompt_template) | |
formatted_prompt = prompt_val.format( | |
context=context_str, | |
conv_context=chatbot.get_context(), | |
question=question, | |
topics=", ".join(topics), | |
entities=json.dumps(entity_tracker) | |
) | |
full_response = generate_chunked_response(model, formatted_prompt) | |
answer_patterns = [ | |
r"Provide a concise and direct answer to the question without mentioning the web search or these instructions:", | |
r"Provide a concise and direct answer to the question:", | |
r"Answer:", | |
r"Provide a summarized and direct answer to the original question without mentioning the web search or these instructions:", | |
r"Do not include any source information in your answer." | |
] | |
for pattern in answer_patterns: | |
match = re.split(pattern, full_response, flags=re.IGNORECASE) | |
if len(match) > 1: | |
answer = match[-1].strip() | |
break | |
else: | |
answer = full_response.strip() | |
all_answers.append(answer) | |
break | |
except Exception as e: | |
print(f"Error in ask_question (attempt {attempt + 1}): {e}") | |
if "Input validation error" in str(e) and attempt < max_attempts - 1: | |
print(f"Reducing context length for next attempt") | |
elif attempt == max_attempts - 1: | |
all_answers.append(f"I apologize, but I'm having trouble processing the query due to its length or complexity.") | |
answer = "\n\n".join(all_answers) | |
sources = set(doc.metadata['source'] for doc in web_docs) | |
sources_section = "\n\nSources:\n" + "\n".join(f"- {source}" for source in sources) | |
answer += sources_section | |
return answer | |
else: | |
for attempt in range(max_attempts): | |
try: | |
if database is None: | |
return "No documents available. Please upload documents or enable web search to answer questions." | |
retriever = database.as_retriever() | |
relevant_docs = retriever.get_relevant_documents(contextualized_question) | |
context_str = "\n".join([doc.page_content for doc in relevant_docs]) | |
if attempt > 0: | |
words = context_str.split() | |
context_str = " ".join(words[:int(len(words) * context_reduction_factor)]) | |
prompt_template = """ | |
Answer the question based on the following context: | |
Context: | |
{context} | |
Current Question: {question} | |
If the context doesn't contain relevant information, state that the information is not available. | |
Provide a summarized and direct answer to the question. | |
Do not include any source information in your answer. | |
""" | |
prompt_val = ChatPromptTemplate.from_template(prompt_template) | |
formatted_prompt = prompt_val.format(context=context_str, question=contextualized_question) | |
full_response = generate_chunked_response(model, formatted_prompt) | |
answer_patterns = [ | |
r"Provide a concise and direct answer to the question without mentioning the web search or these instructions:", | |
r"Provide a concise and direct answer to the question:", | |
r"Answer:", | |
r"Provide a summarized and direct answer to the original question without mentioning the web search or these instructions:", | |
r"Do not include any source information in your answer." | |
] | |
for pattern in answer_patterns: | |
match = re.split(pattern, full_response, flags=re.IGNORECASE) | |
if len(match) > 1: | |
answer = match[-1].strip() | |
break | |
else: | |
answer = full_response.strip() | |
return answer | |
except Exception as e: | |
print(f"Error in ask_question (attempt {attempt + 1}): {e}") | |
if "Input validation error" in str(e) and attempt < max_attempts - 1: | |
print(f"Reducing context length for next attempt") | |
elif attempt == max_attempts - 1: | |
return f"I apologize, but I'm having trouble processing your question due to its length or complexity. Could you please try rephrasing it more concisely?" | |
return "An unexpected error occurred. Please try again later." | |
# Gradio interface | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Context-Driven Conversational Chatbot") | |
with gr.Row(): | |
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"]) | |
update_button = gr.Button("Upload PDF") | |
update_output = gr.Textbox(label="Update Status") | |
update_button.click(update_vectors, inputs=[file_input], outputs=update_output) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
chatbot = gr.Chatbot(label="Conversation") | |
question_input = gr.Textbox(label="Ask a question") | |
submit_button = gr.Button("Submit") | |
with gr.Column(scale=1): | |
temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1) | |
top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1) | |
repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1) | |
web_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False) | |
context_driven_chatbot = EnhancedContextDrivenChatbot() | |
def chat(question, history, temperature, top_p, repetition_penalty, web_search): | |
answer = ask_question(question, temperature, top_p, repetition_penalty, web_search, context_driven_chatbot) | |
history.append((question, answer)) | |
return "", history | |
submit_button.click(chat, inputs=[question_input, chatbot, temperature_slider, top_p_slider, repetition_penalty_slider, web_search_checkbox], outputs=[question_input, chatbot]) | |
clear_button = gr.Button("Clear Cache") | |
clear_output = gr.Textbox(label="Cache Status") | |
clear_button.click(clear_cache, inputs=[], outputs=clear_output) | |
if __name__ == "__main__": | |
demo.launch() | |