File size: 18,577 Bytes
5090140
28ed44f
177c5b5
28ed44f
0c730b1
10660a7
 
 
4892e48
435253f
 
b52d39b
bb706d3
10660a7
8ac8380
 
28ed44f
 
0ccfbeb
28ed44f
 
 
8b05473
9e38742
8ac8380
28ed44f
7f5b560
63b644a
 
 
 
 
 
 
 
041d8cf
 
63b644a
041d8cf
 
 
 
 
63b644a
 
 
 
 
 
 
041d8cf
 
 
 
 
63b644a
041d8cf
63b644a
041d8cf
 
63b644a
 
041d8cf
 
 
 
 
 
 
 
63b644a
 
 
041d8cf
 
63b644a
041d8cf
 
 
 
 
 
 
b52d39b
041d8cf
 
 
 
 
2982f30
041d8cf
 
 
 
53b9156
041d8cf
 
53b9156
63b644a
b7cb350
0ccfbeb
8da6a04
 
ddc0536
 
0ccfbeb
ddc0536
 
 
 
 
 
 
 
0ccfbeb
ddc0536
 
 
 
 
 
 
 
 
 
 
0ccfbeb
ddc0536
28ed44f
8da6a04
 
687c2f0
8da6a04
 
 
 
 
 
687c2f0
8da6a04
 
 
 
 
 
32fb8f8
8da6a04
 
 
 
4d152e0
8da6a04
4d152e0
d32ce41
 
 
 
 
 
646f8a3
d32ce41
 
8da6a04
 
 
10660a7
 
 
0ccfbeb
10660a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94d22ca
10660a7
 
 
0ccfbeb
10660a7
1dc5b0f
 
10660a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dc5b0f
10660a7
1dc5b0f
10660a7
 
 
 
 
1dc5b0f
10660a7
1dc5b0f
 
10660a7
 
4d152e0
10660a7
1dc5b0f
10660a7
 
 
 
 
 
4d152e0
1dc5b0f
10660a7
1dc5b0f
4d152e0
10660a7
4d152e0
 
10660a7
1dc5b0f
 
0ccfbeb
8b01918
 
4d152e0
8b01918
10660a7
 
041d8cf
8b01918
 
d23826b
8f325c3
 
8b01918
4d152e0
 
 
 
 
d32ce41
 
 
63b644a
ced5a78
4920472
041d8cf
4920472
b6683d4
041d8cf
 
 
 
 
 
 
 
 
 
 
 
 
 
63b644a
041d8cf
 
 
 
 
63b644a
041d8cf
 
 
 
 
 
 
 
 
 
63b644a
 
041d8cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6683d4
4920472
041d8cf
4920472
 
b6683d4
4920472
 
 
 
 
b6683d4
 
 
 
ced5a78
b6683d4
 
 
 
 
 
 
 
 
 
 
 
59368fb
b6683d4
 
8b05473
4920472
ced5a78
b6683d4
4920472
b6683d4
4920472
 
 
 
59368fb
8d2ef48
4920472
b6683d4
4920472
 
 
 
 
 
 
d8b3320
4920472
8da6a04
4920472
 
 
 
 
 
d32ce41
 
 
041d8cf
8b01918
28ed44f
041d8cf
8da6a04
0f075d7
8b01918
d613eb7
8b01918
 
0ccfbeb
8da6a04
0f075d7
8b01918
 
041d8cf
8b01918
 
 
 
 
 
4b05267
63b644a
ced5a78
0ccfbeb
041d8cf
c86dfe0
 
 
0ccfbeb
4d152e0
8b01918
 
 
8da6a04
8b01918
63fcaee
6fac185
63fcaee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import os
import json
import re
import gradio as gr
import pandas as pd
import requests
import random
import urllib.parse
import spacy
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
from typing import List, Dict
from tempfile import NamedTemporaryFile
from bs4 import BeautifulSoup
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_core.output_parsers import StrOutputParser
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceHub
from langchain_core.documents import Document
from sentence_transformers import SentenceTransformer

huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")

# Load spaCy model
nlp = spacy.load("en_core_web_sm")

# Load SentenceTransformer model
sentence_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')

class EnhancedContextDrivenChatbot:
    def __init__(self, history_size=10):
        self.history = []
        self.history_size = history_size
        self.entity_tracker = {}

    def add_to_history(self, text):
        self.history.append(text)
        if len(self.history) > self.history_size:
            self.history.pop(0)
        
        # Update entity tracker
        doc = nlp(text)
        for ent in doc.ents:
            if ent.label_ not in self.entity_tracker:
                self.entity_tracker[ent.label_] = set()
            self.entity_tracker[ent.label_].add(ent.text)

    def get_context(self):
        return " ".join(self.history)

    def is_follow_up_question(self, question):
        doc = nlp(question.lower())
        follow_up_indicators = set(['it', 'this', 'that', 'these', 'those', 'he', 'she', 'they', 'them'])
        return any(token.text in follow_up_indicators for token in doc)

    def extract_topics(self, text):
        doc = nlp(text)
        return [chunk.text for chunk in doc.noun_chunks]

    def get_most_relevant_context(self, question):
        if not self.history:
            return question

        # Create a combined context from history
        combined_context = self.get_context()
        
        # Get embeddings
        context_embedding = sentence_model.encode([combined_context])[0]
        question_embedding = sentence_model.encode([question])[0]
        
        # Calculate similarity
        similarity = cosine_similarity([context_embedding], [question_embedding])[0][0]
        
        # If similarity is low, it might be a new topic
        if similarity < 0.3:  # This threshold can be adjusted
            return question
        
        # Otherwise, prepend the context
        return f"{combined_context} {question}"

    def process_question(self, question):
        contextualized_question = self.get_most_relevant_context(question)
        
        # Extract topics from the question
        topics = self.extract_topics(question)
        
        # Check if it's a follow-up question
        if self.is_follow_up_question(question):
            # If it's a follow-up, make sure to include previous context
            contextualized_question = f"{self.get_context()} {question}"
        
        # Add the new question to history
        self.add_to_history(question)
        
        return contextualized_question, topics, self.entity_tracker
        
def load_document(file: NamedTemporaryFile) -> List[Document]:
    """Loads and splits the document into pages."""
    loader = PyPDFLoader(file.name)
    return loader.load_and_split()

def update_vectors(files):
    if not files:
        return "Please upload at least one PDF file."
    
    embed = get_embeddings()
    total_chunks = 0
    
    all_data = []
    for file in files:
        data = load_document(file)
        all_data.extend(data)
        total_chunks += len(data)
    
    if os.path.exists("faiss_database"):
        database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
        database.add_documents(all_data)
    else:
        database = FAISS.from_documents(all_data, embed)
    
    database.save_local("faiss_database")
    
    return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files."

def get_embeddings():
    return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")

def clear_cache():
    if os.path.exists("faiss_database"):
        os.remove("faiss_database")
        return "Cache cleared successfully."
    else:
        return "No cache to clear."

def get_model(temperature, top_p, repetition_penalty):
    return HuggingFaceHub(
        repo_id="mistralai/Mistral-7B-Instruct-v0.3",
        model_kwargs={
            "temperature": temperature,
            "top_p": top_p,
            "repetition_penalty": repetition_penalty,
            "max_length": 1000
        },
        huggingfacehub_api_token=huggingface_token
    )

def generate_chunked_response(model, prompt, max_tokens=1000, max_chunks=5):
    full_response = ""
    for i in range(max_chunks):
        try:
            chunk = model(prompt + full_response, max_new_tokens=max_tokens)
            chunk = chunk.strip()
            if chunk.endswith((".", "!", "?")):
                full_response += chunk
                break
            full_response += chunk
        except Exception as e:
            print(f"Error in generate_chunked_response: {e}")
            break
    return full_response.strip()

def extract_text_from_webpage(html):
    soup = BeautifulSoup(html, 'html.parser')
    for script in soup(["script", "style"]):
        script.extract()
    text = soup.get_text()
    lines = (line.strip() for line in text.splitlines())
    chunks = (phrase.strip() for line in lines for phrase in line.split("  "))
    text = '\n'.join(chunk for chunk in chunks if chunk)
    return text

_useragent_list = [
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
]

def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None):
    escaped_term = urllib.parse.quote_plus(term)
    start = 0
    all_results = []
    max_chars_per_page = 8000

    print(f"Starting Google search for term: '{term}'")

    with requests.Session() as session:
        while start < num_results:
            try:
                user_agent = random.choice(_useragent_list)
                headers = {
                    'User-Agent': user_agent
                }
                resp = session.get(
                    url="https://www.google.com/search",
                    headers=headers,
                    params={
                        "q": term,
                        "num": num_results - start,
                        "hl": lang,
                        "start": start,
                        "safe": safe,
                    },
                    timeout=timeout,
                    verify=ssl_verify,
                )
                resp.raise_for_status()
                print(f"Successfully retrieved search results page (start={start})")
            except requests.exceptions.RequestException as e:
                print(f"Error retrieving search results: {e}")
                break

            soup = BeautifulSoup(resp.text, "html.parser")
            result_block = soup.find_all("div", attrs={"class": "g"})
            if not result_block:
                print("No results found on this page")
                break
            
            print(f"Found {len(result_block)} results on this page")
            for result in result_block:
                link = result.find("a", href=True)
                if link:
                    link = link["href"]
                    print(f"Processing link: {link}")
                    try:
                        webpage = session.get(link, headers=headers, timeout=timeout)
                        webpage.raise_for_status()
                        visible_text = extract_text_from_webpage(webpage.text)
                        if len(visible_text) > max_chars_per_page:
                            visible_text = visible_text[:max_chars_per_page] + "..."
                        all_results.append({"link": link, "text": visible_text})
                        print(f"Successfully extracted text from {link}")
                    except requests.exceptions.RequestException as e:
                        print(f"Error retrieving webpage content: {e}")
                        all_results.append({"link": link, "text": None})
                else:
                    print("No link found for this result")
                    all_results.append({"link": None, "text": None})
            start += len(result_block)

    print(f"Search completed. Total results: {len(all_results)}")
    
    if not all_results:
        print("No search results found. Returning a default message.")
        return [{"link": None, "text": "No information found in the web search results."}]

    return all_results

def ask_question(question, temperature, top_p, repetition_penalty, web_search, chatbot):
    if not question:
        return "Please enter a question."

    model = get_model(temperature, top_p, repetition_penalty)
    embed = get_embeddings()

    if os.path.exists("faiss_database"):
        database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
    else:
        database = None

    max_attempts = 3
    context_reduction_factor = 0.7

    contextualized_question, topics, entity_tracker = chatbot.process_question(question)

    if web_search:
        search_results = google_search(contextualized_question)
        all_answers = []

        for attempt in range(max_attempts):
            try:
                web_docs = [Document(page_content=result["text"], metadata={"source": result["link"]}) for result in search_results if result["text"]]

                if database is None:
                    database = FAISS.from_documents(web_docs, embed)
                else:
                    database.add_documents(web_docs)

                database.save_local("faiss_database")

                context_str = "\n".join([f"Source: {doc.metadata['source']}\nContent: {doc.page_content}" for doc in web_docs])

                prompt_template = """
                Answer the question based on the following web search results, conversation context, and entity information:
                Web Search Results:
                {context}
                Conversation Context: {conv_context}
                Current Question: {question}
                Topics: {topics}
                Entity Information: {entities}
                If the web search results don't contain relevant information, state that the information is not available in the search results.
                Provide a summarized and direct answer to the question without mentioning the web search or these instructions.
                Do not include any source information in your answer.                    
                """

                prompt_val = ChatPromptTemplate.from_template(prompt_template)
                formatted_prompt = prompt_val.format(
                    context=context_str, 
                    conv_context=chatbot.get_context(), 
                    question=question,
                    topics=", ".join(topics),
                    entities=json.dumps(entity_tracker)
                )

                full_response = generate_chunked_response(model, formatted_prompt)

                answer_patterns = [
                    r"Provide a concise and direct answer to the question without mentioning the web search or these instructions:",
                    r"Provide a concise and direct answer to the question:",
                    r"Answer:",
                    r"Provide a summarized and direct answer to the original question without mentioning the web search or these instructions:",
                    r"Do not include any source information in your answer."                   
                ]

                for pattern in answer_patterns:
                    match = re.split(pattern, full_response, flags=re.IGNORECASE)
                    if len(match) > 1:
                        answer = match[-1].strip()
                        break
                else:
                    answer = full_response.strip()

                all_answers.append(answer)
                break

            except Exception as e:
                print(f"Error in ask_question (attempt {attempt + 1}): {e}")
                if "Input validation error" in str(e) and attempt < max_attempts - 1:
                    print(f"Reducing context length for next attempt")
                elif attempt == max_attempts - 1:
                    all_answers.append(f"I apologize, but I'm having trouble processing the query due to its length or complexity.")

        answer = "\n\n".join(all_answers)
        sources = set(doc.metadata['source'] for doc in web_docs)
        sources_section = "\n\nSources:\n" + "\n".join(f"- {source}" for source in sources)
        answer += sources_section

        return answer

    else:
        for attempt in range(max_attempts):
            try:
                if database is None:
                    return "No documents available. Please upload documents or enable web search to answer questions."

                retriever = database.as_retriever()
                relevant_docs = retriever.get_relevant_documents(contextualized_question)
                context_str = "\n".join([doc.page_content for doc in relevant_docs])

                if attempt > 0:
                    words = context_str.split()
                    context_str = " ".join(words[:int(len(words) * context_reduction_factor)])

                prompt_template = """
                Answer the question based on the following context:
                Context:
                {context}
                Current Question: {question}
                If the context doesn't contain relevant information, state that the information is not available.
                Provide a summarized and direct answer to the question.
                Do not include any source information in your answer.
                """

                prompt_val = ChatPromptTemplate.from_template(prompt_template)
                formatted_prompt = prompt_val.format(context=context_str, question=contextualized_question)

                full_response = generate_chunked_response(model, formatted_prompt)

                answer_patterns = [
                    r"Provide a concise and direct answer to the question without mentioning the web search or these instructions:",
                    r"Provide a concise and direct answer to the question:",
                    r"Answer:",
                    r"Provide a summarized and direct answer to the original question without mentioning the web search or these instructions:",
                    r"Do not include any source information in your answer."     
                ]

                for pattern in answer_patterns:
                    match = re.split(pattern, full_response, flags=re.IGNORECASE)
                    if len(match) > 1:
                        answer = match[-1].strip()
                        break
                else:
                    answer = full_response.strip()

                return answer

            except Exception as e:
                print(f"Error in ask_question (attempt {attempt + 1}): {e}")
                if "Input validation error" in str(e) and attempt < max_attempts - 1:
                    print(f"Reducing context length for next attempt")
                elif attempt == max_attempts - 1:
                    return f"I apologize, but I'm having trouble processing your question due to its length or complexity. Could you please try rephrasing it more concisely?"

    return "An unexpected error occurred. Please try again later."

# Gradio interface
# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Context-Driven Conversational Chatbot")
    
    with gr.Row():
        file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
        update_button = gr.Button("Upload PDF")
    
    update_output = gr.Textbox(label="Update Status")
    update_button.click(update_vectors, inputs=[file_input], outputs=update_output)
    
    with gr.Row():
        with gr.Column(scale=2):
            chatbot = gr.Chatbot(label="Conversation")
            question_input = gr.Textbox(label="Ask a question")
            submit_button = gr.Button("Submit")
        with gr.Column(scale=1):
            temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1)
            top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1)
            repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1)
            web_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False)

    context_driven_chatbot = EnhancedContextDrivenChatbot()

    def chat(question, history, temperature, top_p, repetition_penalty, web_search):
        answer = ask_question(question, temperature, top_p, repetition_penalty, web_search, context_driven_chatbot)
        history.append((question, answer))
        return "", history
    
    submit_button.click(chat, inputs=[question_input, chatbot, temperature_slider, top_p_slider, repetition_penalty_slider, web_search_checkbox], outputs=[question_input, chatbot])
    
    clear_button = gr.Button("Clear Cache")
    clear_output = gr.Textbox(label="Cache Status")
    clear_button.click(clear_cache, inputs=[], outputs=clear_output)

if __name__ == "__main__":
    demo.launch()