|
import os |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from huggingface_hub import login |
|
|
|
|
|
hf_token = "your_hugging_face_api_token" |
|
|
|
|
|
login(token=hf_token) |
|
|
|
|
|
model_name = 'mistralai/Mistral-7B-Instruct-v0.3' |
|
headers = {"Authorization": f"Bearer {hf_token}"} |
|
|
|
|
|
try: |
|
import sentencepiece |
|
except ImportError: |
|
raise ImportError("The sentencepiece library is required for this tokenizer. Please install it with `pip install sentencepiece`.") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=hf_token) |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
|
|
|
|
text_input = "How did Tesla perform in Q1 2024?" |
|
|
|
|
|
inputs = tokenizer(text_input, return_tensors="pt").to(device) |
|
|
|
|
|
outputs = model.generate(**inputs, max_length=150, temperature=0.7, top_p=0.9, top_k=50) |
|
|
|
|
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
print(response) |