|
import os |
|
import logging |
|
import asyncio |
|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.vectorstores import FAISS |
|
from langchain.schema import Document |
|
from duckduckgo_search import DDGS |
|
|
|
|
|
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN") |
|
|
|
MODELS = [ |
|
"mistralai/Mistral-7B-Instruct-v0.3", |
|
"mistralai/Mixtral-8x7B-Instruct-v0.1", |
|
"mistralai/Mistral-Nemo-Instruct-2407", |
|
"meta-llama/Meta-Llama-3.1-8B-Instruct", |
|
"meta-llama/Meta-Llama-3.1-70B-Instruct" |
|
] |
|
|
|
def get_embeddings(): |
|
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large") |
|
|
|
def duckduckgo_search(query): |
|
with DDGS() as ddgs: |
|
results = ddgs.text(query, max_results=10) |
|
return results |
|
|
|
def create_web_search_vectors(search_results): |
|
embed = get_embeddings() |
|
documents = [] |
|
for result in search_results: |
|
if 'body' in result: |
|
content = f"{result['title']}\n{result['body']}\nSource: {result['href']}" |
|
documents.append(Document(page_content=content, metadata={"source": result['href']})) |
|
return FAISS.from_documents(documents, embed) |
|
|
|
async def get_response_with_search(query, model, use_embeddings, num_calls=3, temperature=0.2): |
|
search_results = duckduckgo_search(query) |
|
|
|
if not search_results: |
|
yield "No web search results available. Please try again.", "" |
|
return |
|
|
|
if use_embeddings: |
|
web_search_database = create_web_search_vectors(search_results) |
|
retriever = web_search_database.as_retriever(search_kwargs={"k": 5}) |
|
relevant_docs = retriever.get_relevant_documents(query) |
|
context = "\n".join([doc.page_content for doc in relevant_docs]) |
|
else: |
|
context = "\n".join([f"{result['title']}\n{result['body']}\nSource: {result['href']}" for result in search_results]) |
|
|
|
prompt = f"""Using the following context from web search results: |
|
{context} |
|
Write a detailed and complete research document that fulfills the following user request: '{query}' |
|
After writing the document, please provide a list of sources used in your response.""" |
|
|
|
|
|
client = InferenceClient(model, token=huggingface_token) |
|
full_response = "" |
|
|
|
try: |
|
for _ in range(num_calls): |
|
for response in client.chat_completion( |
|
messages=[{"role": "user", "content": prompt}], |
|
max_tokens=6000, |
|
temperature=temperature, |
|
stream=True, |
|
top_p=0.8, |
|
): |
|
if isinstance(response, dict) and "choices" in response: |
|
for choice in response["choices"]: |
|
if "delta" in choice and "content" in choice["delta"]: |
|
chunk = choice["delta"]["content"] |
|
full_response += chunk |
|
yield full_response, "" |
|
else: |
|
logging.error("Unexpected response format or missing attributes in the response object.") |
|
break |
|
except Exception as e: |
|
logging.error(f"Error in get_response_with_search: {str(e)}") |
|
yield f"An error occurred while processing your request: {str(e)}", "" |
|
|
|
if not full_response: |
|
logging.warning("No response generated from the model") |
|
yield "No response generated from the model.", "" |
|
|
|
async def respond(message, history, model, temperature, num_calls, use_embeddings): |
|
logging.info(f"User Query: {message}") |
|
logging.info(f"Model Used: {model}") |
|
logging.info(f"Temperature: {temperature}") |
|
logging.info(f"Number of API Calls: {num_calls}") |
|
logging.info(f"Use Embeddings: {use_embeddings}") |
|
|
|
try: |
|
async for main_content, sources in get_response_with_search(message, model, use_embeddings, num_calls=num_calls, temperature=temperature): |
|
response = f"{main_content}\n\n{sources}" |
|
yield response |
|
except asyncio.CancelledError: |
|
yield "The operation was cancelled. Please try again." |
|
except Exception as e: |
|
logging.error(f"Error in respond function: {str(e)}") |
|
yield f"An error occurred: {str(e)}" |
|
|
|
css = """ |
|
/* Fine-tune chatbox size */ |
|
.chatbot-container { |
|
height: 600px !important; |
|
width: 100% !important; |
|
} |
|
.chatbot-container > div { |
|
height: 100%; |
|
width: 100%; |
|
} |
|
""" |
|
|
|
|
|
def create_gradio_interface(): |
|
custom_placeholder = "Enter your question here for web search." |
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[2]), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"), |
|
gr.Checkbox(label="Use Embeddings", value=True), |
|
], |
|
title="AI-powered Web Search Assistant", |
|
description="Use web search to answer questions or generate summaries.", |
|
theme=gr.Theme.from_hub("allenai/gradio-theme"), |
|
css=css, |
|
examples=[ |
|
["What are the latest developments in artificial intelligence?"], |
|
["Explain the concept of quantum computing."], |
|
["What are the environmental impacts of renewable energy?"] |
|
], |
|
cache_examples=False, |
|
analytics_enabled=False, |
|
textbox=gr.Textbox(placeholder=custom_placeholder, container=False, scale=7), |
|
chatbot=gr.Chatbot( |
|
show_copy_button=True, |
|
likeable=True, |
|
layout="bubble", |
|
height=400, |
|
) |
|
) |
|
|
|
with demo: |
|
gr.Markdown(""" |
|
## How to use |
|
1. Enter your question in the chat interface. |
|
2. Select the model you want to use from the dropdown. |
|
3. Adjust the Temperature to control the randomness of the response. |
|
4. Set the Number of API Calls to determine how many times the model will be queried. |
|
5. Check or uncheck the "Use Embeddings" box to toggle between using embeddings or direct text summarization. |
|
6. Press Enter or click the submit button to get your answer. |
|
7. Use the provided examples or ask your own questions. |
|
""") |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
demo = create_gradio_interface() |
|
demo.launch(share=True) |