File size: 6,483 Bytes
63d903a
e45d4fc
2d75ed4
0b607fb
a7533b2
3890ae0
 
 
 
2594602
781b94b
28ed44f
a7533b2
b4dffd4
 
 
2d75ed4
3654925
2d75ed4
b4dffd4
 
3890ae0
 
9b9a599
3890ae0
5857237
3fd1094
bd71ef9
5857237
3890ae0
 
 
 
 
 
 
 
 
2d75ed4
3890ae0
9328d2d
 
3890ae0
 
 
9328d2d
 
 
 
 
 
 
 
3890ae0
bd71ef9
 
 
9b9a599
d9bca78
 
5860470
 
2d75ed4
5860470
 
2d75ed4
a20790a
2d75ed4
5860470
3fd1094
5860470
 
 
 
 
 
 
 
 
 
2d75ed4
 
 
3890ae0
5860470
 
 
 
2d75ed4
a6abb8f
 
3890ae0
 
9328d2d
d1372f5
3890ae0
2d75ed4
3890ae0
 
2d75ed4
 
3890ae0
 
 
b4dffd4
 
149b538
 
 
 
 
 
 
 
 
b4dffd4
d9bca78
3890ae0
 
 
 
 
 
 
d9bca78
3890ae0
 
9328d2d
3890ae0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204d06f
3890ae0
 
 
 
 
 
 
 
9328d2d
 
 
3890ae0
 
 
b4dffd4
2594602
3890ae0
f9f0a5c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import logging
import asyncio
import gradio as gr
from huggingface_hub import InferenceClient
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.schema import Document
from duckduckgo_search import DDGS

# Environment variables and configurations
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")

MODELS = [
    "mistralai/Mistral-7B-Instruct-v0.3",
    "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "mistralai/Mistral-Nemo-Instruct-2407",
    "meta-llama/Meta-Llama-3.1-8B-Instruct",
    "meta-llama/Meta-Llama-3.1-70B-Instruct"
]

def get_embeddings():
    return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")

def duckduckgo_search(query):
    with DDGS() as ddgs:
        results = ddgs.text(query, max_results=10)
    return results

def create_web_search_vectors(search_results):
    embed = get_embeddings()
    documents = []
    for result in search_results:
        if 'body' in result:
            content = f"{result['title']}\n{result['body']}\nSource: {result['href']}"
            documents.append(Document(page_content=content, metadata={"source": result['href']}))
    return FAISS.from_documents(documents, embed)

async def get_response_with_search(query, model, use_embeddings, num_calls=3, temperature=0.2):
    search_results = duckduckgo_search(query)
    
    if not search_results:
        yield "No web search results available. Please try again.", ""
        return

    if use_embeddings:
        web_search_database = create_web_search_vectors(search_results)
        retriever = web_search_database.as_retriever(search_kwargs={"k": 5})
        relevant_docs = retriever.get_relevant_documents(query)
        context = "\n".join([doc.page_content for doc in relevant_docs])
    else:
        context = "\n".join([f"{result['title']}\n{result['body']}\nSource: {result['href']}" for result in search_results])

    prompt = f"""Using the following context from web search results:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response."""

    # Use Hugging Face API
    client = InferenceClient(model, token=huggingface_token)
    full_response = ""
    
    try:
        for _ in range(num_calls):
            for response in client.chat_completion(
                messages=[{"role": "user", "content": prompt}],
                max_tokens=6000,
                temperature=temperature,
                stream=True,
                top_p=0.8,
            ):
                if isinstance(response, dict) and "choices" in response:
                    for choice in response["choices"]:
                        if "delta" in choice and "content" in choice["delta"]:
                            chunk = choice["delta"]["content"]
                            full_response += chunk
                            yield full_response, ""
                else:
                    logging.error("Unexpected response format or missing attributes in the response object.")
                    break
    except Exception as e:
        logging.error(f"Error in get_response_with_search: {str(e)}")
        yield f"An error occurred while processing your request: {str(e)}", ""

    if not full_response:
        logging.warning("No response generated from the model")
        yield "No response generated from the model.", ""

async def respond(message, history, model, temperature, num_calls, use_embeddings):
    logging.info(f"User Query: {message}")
    logging.info(f"Model Used: {model}")
    logging.info(f"Temperature: {temperature}")
    logging.info(f"Number of API Calls: {num_calls}")
    logging.info(f"Use Embeddings: {use_embeddings}")

    try:
        async for main_content, sources in get_response_with_search(message, model, use_embeddings, num_calls=num_calls, temperature=temperature):
            response = f"{main_content}\n\n{sources}"
            yield response
    except asyncio.CancelledError:
        yield "The operation was cancelled. Please try again."
    except Exception as e:
        logging.error(f"Error in respond function: {str(e)}")
        yield f"An error occurred: {str(e)}"

css = """
/* Fine-tune chatbox size */
.chatbot-container {
    height: 600px !important;
    width: 100% !important;
}
.chatbot-container > div {
    height: 100%;
    width: 100%;
}
"""

# Gradio interface setup
def create_gradio_interface():
    custom_placeholder = "Enter your question here for web search."

    demo = gr.ChatInterface(
        respond,
        additional_inputs=[
            gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[2]),
            gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
            gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
            gr.Checkbox(label="Use Embeddings", value=True),
        ],
        title="AI-powered Web Search Assistant",
        description="Use web search to answer questions or generate summaries.",
        theme=gr.Theme.from_hub("allenai/gradio-theme"),
        css=css,
        examples=[
            ["What are the latest developments in artificial intelligence?"],
            ["Explain the concept of quantum computing."],
            ["What are the environmental impacts of renewable energy?"]
        ],
        cache_examples=False,
        analytics_enabled=False,
        textbox=gr.Textbox(placeholder=custom_placeholder, container=False, scale=7),
        chatbot=gr.Chatbot(
            show_copy_button=True,
            likeable=True,
            layout="bubble",
            height=400,
        )
    )

    with demo:
        gr.Markdown("""
        ## How to use
        1. Enter your question in the chat interface.
        2. Select the model you want to use from the dropdown.
        3. Adjust the Temperature to control the randomness of the response.
        4. Set the Number of API Calls to determine how many times the model will be queried.
        5. Check or uncheck the "Use Embeddings" box to toggle between using embeddings or direct text summarization.
        6. Press Enter or click the submit button to get your answer.
        7. Use the provided examples or ask your own questions.
        """)

    return demo

if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.launch(share=True)