File size: 6,483 Bytes
63d903a e45d4fc 2d75ed4 0b607fb a7533b2 3890ae0 2594602 781b94b 28ed44f a7533b2 b4dffd4 2d75ed4 3654925 2d75ed4 b4dffd4 3890ae0 9b9a599 3890ae0 5857237 3fd1094 bd71ef9 5857237 3890ae0 2d75ed4 3890ae0 9328d2d 3890ae0 9328d2d 3890ae0 bd71ef9 9b9a599 d9bca78 5860470 2d75ed4 5860470 2d75ed4 a20790a 2d75ed4 5860470 3fd1094 5860470 2d75ed4 3890ae0 5860470 2d75ed4 a6abb8f 3890ae0 9328d2d d1372f5 3890ae0 2d75ed4 3890ae0 2d75ed4 3890ae0 b4dffd4 149b538 b4dffd4 d9bca78 3890ae0 d9bca78 3890ae0 9328d2d 3890ae0 204d06f 3890ae0 9328d2d 3890ae0 b4dffd4 2594602 3890ae0 f9f0a5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import os
import logging
import asyncio
import gradio as gr
from huggingface_hub import InferenceClient
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.schema import Document
from duckduckgo_search import DDGS
# Environment variables and configurations
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
MODELS = [
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-Nemo-Instruct-2407",
"meta-llama/Meta-Llama-3.1-8B-Instruct",
"meta-llama/Meta-Llama-3.1-70B-Instruct"
]
def get_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
def duckduckgo_search(query):
with DDGS() as ddgs:
results = ddgs.text(query, max_results=10)
return results
def create_web_search_vectors(search_results):
embed = get_embeddings()
documents = []
for result in search_results:
if 'body' in result:
content = f"{result['title']}\n{result['body']}\nSource: {result['href']}"
documents.append(Document(page_content=content, metadata={"source": result['href']}))
return FAISS.from_documents(documents, embed)
async def get_response_with_search(query, model, use_embeddings, num_calls=3, temperature=0.2):
search_results = duckduckgo_search(query)
if not search_results:
yield "No web search results available. Please try again.", ""
return
if use_embeddings:
web_search_database = create_web_search_vectors(search_results)
retriever = web_search_database.as_retriever(search_kwargs={"k": 5})
relevant_docs = retriever.get_relevant_documents(query)
context = "\n".join([doc.page_content for doc in relevant_docs])
else:
context = "\n".join([f"{result['title']}\n{result['body']}\nSource: {result['href']}" for result in search_results])
prompt = f"""Using the following context from web search results:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response."""
# Use Hugging Face API
client = InferenceClient(model, token=huggingface_token)
full_response = ""
try:
for _ in range(num_calls):
for response in client.chat_completion(
messages=[{"role": "user", "content": prompt}],
max_tokens=6000,
temperature=temperature,
stream=True,
top_p=0.8,
):
if isinstance(response, dict) and "choices" in response:
for choice in response["choices"]:
if "delta" in choice and "content" in choice["delta"]:
chunk = choice["delta"]["content"]
full_response += chunk
yield full_response, ""
else:
logging.error("Unexpected response format or missing attributes in the response object.")
break
except Exception as e:
logging.error(f"Error in get_response_with_search: {str(e)}")
yield f"An error occurred while processing your request: {str(e)}", ""
if not full_response:
logging.warning("No response generated from the model")
yield "No response generated from the model.", ""
async def respond(message, history, model, temperature, num_calls, use_embeddings):
logging.info(f"User Query: {message}")
logging.info(f"Model Used: {model}")
logging.info(f"Temperature: {temperature}")
logging.info(f"Number of API Calls: {num_calls}")
logging.info(f"Use Embeddings: {use_embeddings}")
try:
async for main_content, sources in get_response_with_search(message, model, use_embeddings, num_calls=num_calls, temperature=temperature):
response = f"{main_content}\n\n{sources}"
yield response
except asyncio.CancelledError:
yield "The operation was cancelled. Please try again."
except Exception as e:
logging.error(f"Error in respond function: {str(e)}")
yield f"An error occurred: {str(e)}"
css = """
/* Fine-tune chatbox size */
.chatbot-container {
height: 600px !important;
width: 100% !important;
}
.chatbot-container > div {
height: 100%;
width: 100%;
}
"""
# Gradio interface setup
def create_gradio_interface():
custom_placeholder = "Enter your question here for web search."
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[2]),
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
gr.Checkbox(label="Use Embeddings", value=True),
],
title="AI-powered Web Search Assistant",
description="Use web search to answer questions or generate summaries.",
theme=gr.Theme.from_hub("allenai/gradio-theme"),
css=css,
examples=[
["What are the latest developments in artificial intelligence?"],
["Explain the concept of quantum computing."],
["What are the environmental impacts of renewable energy?"]
],
cache_examples=False,
analytics_enabled=False,
textbox=gr.Textbox(placeholder=custom_placeholder, container=False, scale=7),
chatbot=gr.Chatbot(
show_copy_button=True,
likeable=True,
layout="bubble",
height=400,
)
)
with demo:
gr.Markdown("""
## How to use
1. Enter your question in the chat interface.
2. Select the model you want to use from the dropdown.
3. Adjust the Temperature to control the randomness of the response.
4. Set the Number of API Calls to determine how many times the model will be queried.
5. Check or uncheck the "Use Embeddings" box to toggle between using embeddings or direct text summarization.
6. Press Enter or click the submit button to get your answer.
7. Use the provided examples or ask your own questions.
""")
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(share=True) |