Shreyas094's picture
Update app.py
4c78583 verified
raw
history blame
10.2 kB
import os
import logging
import asyncio
import random # Import random for token selection
from typing import AsyncGenerator, Tuple
import gradio as gr
from huggingface_hub import InferenceClient
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.schema import Document
from duckduckgo_search import DDGS
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# List of Hugging Face tokens
huggingface_tokens = [
os.environ.get("HUGGINGFACE_TOKEN_1"),
os.environ.get("HUGGINGFACE_TOKEN_2"),
os.environ.get("HUGGINGFACE_TOKEN_3")
]
# Function to get a random Hugging Face token
def get_random_token():
return random.choice(huggingface_tokens)
MODELS = [
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-Nemo-Instruct-2407",
"meta-llama/Meta-Llama-3.1-8B-Instruct",
"meta-llama/Meta-Llama-3.1-70B-Instruct",
"google/gemma-2-9b-it",
"google/gemma-2-27b-it"
]
DEFAULT_SYSTEM_PROMPT = """You are a world-class financial AI assistant, capable of complex reasoning and reflection.
Reason through the query inside <thinking> tags, and then provide your final response inside <output> tags.
Providing comprehensive and accurate information based on web search results is essential.
Your goal is to synthesize the given context into a coherent and detailed response that directly addresses the user's query.
Please ensure that your response is well-structured and factual.
If you detect that you made a mistake in your reasoning at any point, correct yourself inside <reflection> tags."""
def get_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
def duckduckgo_search(query):
try:
with DDGS() as ddgs:
results = ddgs.text(query, max_results=5)
logging.info(f"Search completed for query: {query}")
return results
except Exception as e:
logging.error(f"Error during DuckDuckGo search: {str(e)}")
return []
def create_web_search_vectors(search_results):
embed = get_embeddings()
documents = []
for result in search_results:
if 'body' in result:
content = f"{result['title']}\n{result['body']}\nSource: {result['href']}"
documents.append(Document(page_content=content, metadata={"source": result['href']}))
logging.info(f"Created vectors for {len(documents)} search results.")
return FAISS.from_documents(documents, embed)
def create_context(search_results, use_embeddings, query):
if use_embeddings:
web_search_database = create_web_search_vectors(search_results)
retriever = web_search_database.as_retriever(search_kwargs={"k": 5})
relevant_docs = retriever.get_relevant_documents(query)
return "\n".join([doc.page_content for doc in relevant_docs])
else:
return "\n".join([f"{result['title']}\n{result['body']}" for result in search_results])
async def get_response_with_search(query: str, system_prompt: str, model: str, use_embeddings: bool, history=None, num_calls: int = 3, temperature: float = 0.2) -> AsyncGenerator[Tuple[str, str], None]:
search_results = duckduckgo_search(query)
if not search_results:
logging.warning(f"No web search results found for query: {query}")
yield "No web search results available. Please try again.", ""
return
sources = [result['href'] for result in search_results if 'href' in result]
source_list_str = "\n".join(sources)
context = create_context(search_results, use_embeddings, query)
logging.info(f"Context created for query: {query}")
user_message = f"""Using the following context from web search results:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'."""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_message}
]
if history:
messages = history + messages
# Get a random token for the API call
token = get_random_token()
client = InferenceClient(model, token=token)
full_response = ""
for call in range(num_calls):
try:
response = await asyncio.to_thread(
client.chat_completion,
messages=messages,
max_tokens=6000,
temperature=temperature,
top_p=0.8,
)
if response is None or not isinstance(response, dict) or 'choices' not in response:
logging.error(f"API call {call + 1} returned an invalid response: {response}")
if call == num_calls - 1:
yield "The API returned an invalid response. Please try again later.", ""
continue
new_content = response['choices'][0]['message']['content']
full_response += new_content
yield full_response, ""
if full_response:
break # If we got a valid response, exit the loop
except Exception as e:
logging.error(f"Error in API call {call + 1}: {str(e)}")
if call == num_calls - 1:
yield f"An error occurred during API calls: {str(e)}. Please try again later.", ""
await asyncio.sleep(1) # 1 second delay between calls
if not full_response:
logging.warning("No response generated from the model")
yield "No response generated from the model. Please try again.", ""
else:
yield f"{full_response}\n\nSources:\n{source_list_str}", ""
def process_history(history):
chat_history = []
if isinstance(history, str):
# If history is a string (like the system prompt), add it as a system message
chat_history.append({"role": "system", "content": history})
elif isinstance(history, list):
for entry in history:
if isinstance(entry, (list, tuple)) and len(entry) == 2:
human, assistant = entry
chat_history.append({"role": "user", "content": human})
if assistant:
chat_history.append({"role": "assistant", "content": assistant})
elif isinstance(entry, str):
# If it's a string, assume it's a user message
chat_history.append({"role": "user", "content": entry})
return chat_history
async def respond(message, system_prompt, history, model, temperature, num_calls, use_embeddings):
logging.info(f"User Query: {message}")
logging.info(f"Model Used: {model}")
logging.info(f"Temperature: {temperature}")
logging.info(f"Number of API Calls: {num_calls}")
logging.info(f"Use Embeddings: {use_embeddings}")
logging.info(f"System Prompt: {system_prompt}")
logging.info(f"History: {history}")
chat_history = process_history(history)
try:
async for main_content, sources in get_response_with_search(
message,
system_prompt,
model,
use_embeddings,
history=chat_history,
num_calls=num_calls,
temperature=temperature
):
yield main_content
if sources:
yield f"\n\nSources:\n{sources}"
except asyncio.CancelledError:
logging.warning("The operation was cancelled.")
yield "The operation was cancelled. Please try again."
except Exception as e:
logging.error(f"Error in respond function: {str(e)}")
yield f"An error occurred: {str(e)}"
css = """
/* Fine-tune chatbox size */
.chatbot-container {
height: 600px !important;
width: 100% !important;
}
.chatbot-container > div {
height: 100%;
width: 100%;
}
"""
# Gradio interface setup
def create_gradio_interface():
custom_placeholder = "Enter your question here for web search."
demo = gr.ChatInterface(
fn=respond,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=True, render=False),
additional_inputs=[
gr.Textbox(value=DEFAULT_SYSTEM_PROMPT, lines=6, label="System Prompt", placeholder="Enter your system prompt here"),
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
gr.Checkbox(label="Use Embeddings", value=False),
],
title="AI-powered Web Search Assistant",
description="Use web search to answer questions or generate summaries.",
theme=gr.Theme.from_hub("allenai/gradio-theme"),
css=css,
examples=[
["What are the latest developments in artificial intelligence?"],
["Explain the concept of quantum computing."],
["What are the environmental impacts of renewable energy?"]
],
cache_examples=False,
analytics_enabled=False,
textbox=gr.Textbox(placeholder=custom_placeholder, container=False, scale=7),
chatbot=gr.Chatbot(
show_copy_button=True,
likeable=True,
layout="bubble",
height=400,
)
)
with demo:
gr.Markdown("""
## How to use
1. Enter your question in the chat interface.
2. Optionally, modify the System Prompt to guide the AI's behavior.
3. Select the model you want to use from the dropdown.
4. Adjust the Temperature to control the randomness of the response.
5. Set the Number of API Calls to determine how many times the model will be queried.
6. Check or uncheck the "Use Embeddings" box to toggle between using embeddings or direct text summarization.
7. Press Enter or click the submit button to get your answer.
8. Use the provided examples or ask your own questions.
""")
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(share=True)