File size: 10,188 Bytes
63d903a
e45d4fc
8b5e7fa
4c78583
480bd35
0b607fb
a7533b2
3890ae0
 
 
 
2594602
64581a6
81c84f4
64581a6
4c78583
 
 
 
 
 
 
 
 
 
a7533b2
b4dffd4
 
 
2d75ed4
3654925
81c84f4
 
 
b4dffd4
 
81c84f4
 
 
 
 
 
 
3890ae0
 
9b9a599
8b5e7fa
 
 
 
 
 
 
 
 
 
3890ae0
 
8b5e7fa
 
 
 
 
 
3890ae0
 
480bd35
 
 
 
 
 
 
 
 
 
8b5e7fa
9328d2d
 
8b5e7fa
 
 
81c84f4
 
 
3890ae0
480bd35
8b5e7fa
e1a8672
8b5e7fa
bd71ef9
e1a8672
81c84f4
9b9a599
8b5e7fa
 
 
 
 
 
 
 
4c78583
 
 
480bd35
8b5e7fa
480bd35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3890ae0
5860470
8b5e7fa
652197b
 
 
8b5e7fa
480bd35
8b5e7fa
480bd35
 
 
 
1b0938e
 
 
 
 
 
 
 
 
480bd35
 
 
 
 
 
 
 
 
 
 
 
d1372f5
3890ae0
8b5e7fa
 
 
 
 
 
 
 
 
480bd35
 
8b5e7fa
 
 
 
 
 
3890ae0
8b5e7fa
 
b4dffd4
 
149b538
 
 
 
 
 
 
 
 
b4dffd4
d9bca78
8b5e7fa
3890ae0
 
 
 
480bd35
81c84f4
3890ae0
81c84f4
fb7ae92
3890ae0
 
ea8692a
3890ae0
8052ffa
 
3890ae0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204d06f
3890ae0
 
 
 
 
81c84f4
 
 
 
 
 
 
3890ae0
 
 
b4dffd4
2594602
3890ae0
480bd35
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import os
import logging
import asyncio
import random  # Import random for token selection
from typing import AsyncGenerator, Tuple
import gradio as gr
from huggingface_hub import InferenceClient
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.schema import Document
from duckduckgo_search import DDGS

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# List of Hugging Face tokens
huggingface_tokens = [
    os.environ.get("HUGGINGFACE_TOKEN_1"),
    os.environ.get("HUGGINGFACE_TOKEN_2"),
    os.environ.get("HUGGINGFACE_TOKEN_3")
]

# Function to get a random Hugging Face token
def get_random_token():
    return random.choice(huggingface_tokens)

MODELS = [
    "mistralai/Mistral-7B-Instruct-v0.3",
    "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "mistralai/Mistral-Nemo-Instruct-2407",
    "meta-llama/Meta-Llama-3.1-8B-Instruct",
    "meta-llama/Meta-Llama-3.1-70B-Instruct",
    "google/gemma-2-9b-it",
    "google/gemma-2-27b-it"
]

DEFAULT_SYSTEM_PROMPT = """You are a world-class financial AI assistant, capable of complex reasoning and reflection. 
Reason through the query inside <thinking> tags, and then provide your final response inside <output> tags.
Providing comprehensive and accurate information based on web search results is essential. 
Your goal is to synthesize the given context into a coherent and detailed response that directly addresses the user's query. 
Please ensure that your response is well-structured and factual.
If you detect that you made a mistake in your reasoning at any point, correct yourself inside <reflection> tags."""

def get_embeddings():
    return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")

def duckduckgo_search(query):
    try:
        with DDGS() as ddgs:
            results = ddgs.text(query, max_results=5)
        logging.info(f"Search completed for query: {query}")
        return results
    except Exception as e:
        logging.error(f"Error during DuckDuckGo search: {str(e)}")
        return []

def create_web_search_vectors(search_results):
    embed = get_embeddings()
    documents = []
    for result in search_results:
        if 'body' in result:
            content = f"{result['title']}\n{result['body']}\nSource: {result['href']}"
            documents.append(Document(page_content=content, metadata={"source": result['href']}))
    logging.info(f"Created vectors for {len(documents)} search results.")
    return FAISS.from_documents(documents, embed)

def create_context(search_results, use_embeddings, query):
    if use_embeddings:
        web_search_database = create_web_search_vectors(search_results)
        retriever = web_search_database.as_retriever(search_kwargs={"k": 5})
        relevant_docs = retriever.get_relevant_documents(query)
        return "\n".join([doc.page_content for doc in relevant_docs])
    else:
        return "\n".join([f"{result['title']}\n{result['body']}" for result in search_results])

async def get_response_with_search(query: str, system_prompt: str, model: str, use_embeddings: bool, history=None, num_calls: int = 3, temperature: float = 0.2) -> AsyncGenerator[Tuple[str, str], None]:
    search_results = duckduckgo_search(query)
    
    if not search_results:
        logging.warning(f"No web search results found for query: {query}")
        yield "No web search results available. Please try again.", ""
        return

    sources = [result['href'] for result in search_results if 'href' in result]
    source_list_str = "\n".join(sources)

    context = create_context(search_results, use_embeddings, query)
    logging.info(f"Context created for query: {query}")

    user_message = f"""Using the following context from web search results:
{context}

Write a detailed and complete research document that fulfills the following user request: '{query}'."""

    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": user_message}
    ]

    if history:
        messages = history + messages

    # Get a random token for the API call
    token = get_random_token()
    client = InferenceClient(model, token=token)
    full_response = ""

    for call in range(num_calls):
        try:
            response = await asyncio.to_thread(
                client.chat_completion,
                messages=messages,
                max_tokens=6000,
                temperature=temperature,
                top_p=0.8,
            )

            if response is None or not isinstance(response, dict) or 'choices' not in response:
                logging.error(f"API call {call + 1} returned an invalid response: {response}")
                if call == num_calls - 1:
                    yield "The API returned an invalid response. Please try again later.", ""
                continue

            new_content = response['choices'][0]['message']['content']
            full_response += new_content
            yield full_response, ""

            if full_response:
                break  # If we got a valid response, exit the loop

        except Exception as e:
            logging.error(f"Error in API call {call + 1}: {str(e)}")
            if call == num_calls - 1:
                yield f"An error occurred during API calls: {str(e)}. Please try again later.", ""
        
        await asyncio.sleep(1)  # 1 second delay between calls

    if not full_response:
        logging.warning("No response generated from the model")
        yield "No response generated from the model. Please try again.", ""
    else:
        yield f"{full_response}\n\nSources:\n{source_list_str}", ""

def process_history(history):
    chat_history = []
    if isinstance(history, str):
        # If history is a string (like the system prompt), add it as a system message
        chat_history.append({"role": "system", "content": history})
    elif isinstance(history, list):
        for entry in history:
            if isinstance(entry, (list, tuple)) and len(entry) == 2:
                human, assistant = entry
                chat_history.append({"role": "user", "content": human})
                if assistant:
                    chat_history.append({"role": "assistant", "content": assistant})
            elif isinstance(entry, str):
                # If it's a string, assume it's a user message
                chat_history.append({"role": "user", "content": entry})
    return chat_history

async def respond(message, system_prompt, history, model, temperature, num_calls, use_embeddings):
    logging.info(f"User Query: {message}")
    logging.info(f"Model Used: {model}")
    logging.info(f"Temperature: {temperature}")
    logging.info(f"Number of API Calls: {num_calls}")
    logging.info(f"Use Embeddings: {use_embeddings}")
    logging.info(f"System Prompt: {system_prompt}")
    logging.info(f"History: {history}")

    chat_history = process_history(history)

    try:
        async for main_content, sources in get_response_with_search(
            message, 
            system_prompt, 
            model, 
            use_embeddings, 
            history=chat_history, 
            num_calls=num_calls, 
            temperature=temperature
        ):
            yield main_content

        if sources:
            yield f"\n\nSources:\n{sources}"

    except asyncio.CancelledError:
        logging.warning("The operation was cancelled.")
        yield "The operation was cancelled. Please try again."
    except Exception as e:
        logging.error(f"Error in respond function: {str(e)}")
        yield f"An error occurred: {str(e)}"

css = """
/* Fine-tune chatbox size */
.chatbot-container {
    height: 600px !important;
    width: 100% !important;
}
.chatbot-container > div {
    height: 100%;
    width: 100%;
}
"""

# Gradio interface setup
def create_gradio_interface():
    custom_placeholder = "Enter your question here for web search."

    demo = gr.ChatInterface(
        fn=respond,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=True, render=False),
        additional_inputs=[
            gr.Textbox(value=DEFAULT_SYSTEM_PROMPT, lines=6, label="System Prompt", placeholder="Enter your system prompt here"),
            gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
            gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
            gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
            gr.Checkbox(label="Use Embeddings", value=False),
        ],
        title="AI-powered Web Search Assistant",
        description="Use web search to answer questions or generate summaries.",
        theme=gr.Theme.from_hub("allenai/gradio-theme"),
        css=css,
        examples=[
            ["What are the latest developments in artificial intelligence?"],
            ["Explain the concept of quantum computing."],
            ["What are the environmental impacts of renewable energy?"]
        ],
        cache_examples=False,
        analytics_enabled=False,
        textbox=gr.Textbox(placeholder=custom_placeholder, container=False, scale=7),
        chatbot=gr.Chatbot(
            show_copy_button=True,
            likeable=True,
            layout="bubble",
            height=400,
        )
    )

    with demo:
        gr.Markdown("""
        ## How to use
        1. Enter your question in the chat interface.
        2. Optionally, modify the System Prompt to guide the AI's behavior.
        3. Select the model you want to use from the dropdown.
        4. Adjust the Temperature to control the randomness of the response.
        5. Set the Number of API Calls to determine how many times the model will be queried.
        6. Check or uncheck the "Use Embeddings" box to toggle between using embeddings or direct text summarization.
        7. Press Enter or click the submit button to get your answer.
        8. Use the provided examples or ask your own questions.
        """)

    return demo

if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.launch(share=True)