Shreyas094's picture
Update app.py
753d9d8 verified
raw
history blame
941 Bytes
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Path to the locally saved quantized model directory
model_path = '/path/to/your/quantized_model_directory'
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Load quantized model
quantized_model = AutoModelForCausalLM.from_pretrained(model_path)
# Check if a GPU is available and move model to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
quantized_model.to(device)
# Example text input
text_input = "How did Tesla perform in Q1 2024?"
# Tokenize input
inputs = tokenizer(text_input, return_tensors="pt").to(device)
# Generate response
outputs = quantized_model.generate(**inputs, max_length=150, do_sample=False)
# Decode generated tokens to readable string
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Print generated response
print(f"Generated response: {response}")