Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
from contextlib import nullcontext | |
import safetensors.torch | |
import torch | |
from accelerate import init_empty_weights | |
from diffusers import AutoencoderKL, SD3Transformer2DModel | |
from diffusers.loaders.single_file_utils import convert_ldm_vae_checkpoint | |
from diffusers.models.modeling_utils import load_model_dict_into_meta | |
from diffusers.utils.import_utils import is_accelerate_available | |
CTX = init_empty_weights if is_accelerate_available else nullcontext | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--checkpoint_path", type=str) | |
parser.add_argument("--output_path", type=str) | |
parser.add_argument("--dtype", type=str) | |
args = parser.parse_args() | |
def load_original_checkpoint(ckpt_path): | |
original_state_dict = safetensors.torch.load_file(ckpt_path) | |
keys = list(original_state_dict.keys()) | |
for k in keys: | |
if "model.diffusion_model." in k: | |
original_state_dict[k.replace("model.diffusion_model.", "")] = original_state_dict.pop(k) | |
return original_state_dict | |
# in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale; | |
# while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation | |
def swap_scale_shift(weight, dim): | |
shift, scale = weight.chunk(2, dim=0) | |
new_weight = torch.cat([scale, shift], dim=0) | |
return new_weight | |
def convert_sd3_transformer_checkpoint_to_diffusers( | |
original_state_dict, num_layers, caption_projection_dim, dual_attention_layers, has_qk_norm | |
): | |
converted_state_dict = {} | |
# Positional and patch embeddings. | |
converted_state_dict["pos_embed.pos_embed"] = original_state_dict.pop("pos_embed") | |
converted_state_dict["pos_embed.proj.weight"] = original_state_dict.pop("x_embedder.proj.weight") | |
converted_state_dict["pos_embed.proj.bias"] = original_state_dict.pop("x_embedder.proj.bias") | |
# Timestep embeddings. | |
converted_state_dict["time_text_embed.timestep_embedder.linear_1.weight"] = original_state_dict.pop( | |
"t_embedder.mlp.0.weight" | |
) | |
converted_state_dict["time_text_embed.timestep_embedder.linear_1.bias"] = original_state_dict.pop( | |
"t_embedder.mlp.0.bias" | |
) | |
converted_state_dict["time_text_embed.timestep_embedder.linear_2.weight"] = original_state_dict.pop( | |
"t_embedder.mlp.2.weight" | |
) | |
converted_state_dict["time_text_embed.timestep_embedder.linear_2.bias"] = original_state_dict.pop( | |
"t_embedder.mlp.2.bias" | |
) | |
# Context projections. | |
converted_state_dict["context_embedder.weight"] = original_state_dict.pop("context_embedder.weight") | |
converted_state_dict["context_embedder.bias"] = original_state_dict.pop("context_embedder.bias") | |
# Pooled context projection. | |
converted_state_dict["time_text_embed.text_embedder.linear_1.weight"] = original_state_dict.pop( | |
"y_embedder.mlp.0.weight" | |
) | |
converted_state_dict["time_text_embed.text_embedder.linear_1.bias"] = original_state_dict.pop( | |
"y_embedder.mlp.0.bias" | |
) | |
converted_state_dict["time_text_embed.text_embedder.linear_2.weight"] = original_state_dict.pop( | |
"y_embedder.mlp.2.weight" | |
) | |
converted_state_dict["time_text_embed.text_embedder.linear_2.bias"] = original_state_dict.pop( | |
"y_embedder.mlp.2.bias" | |
) | |
# Transformer blocks πΈ. | |
for i in range(num_layers): | |
# Q, K, V | |
sample_q, sample_k, sample_v = torch.chunk( | |
original_state_dict.pop(f"joint_blocks.{i}.x_block.attn.qkv.weight"), 3, dim=0 | |
) | |
context_q, context_k, context_v = torch.chunk( | |
original_state_dict.pop(f"joint_blocks.{i}.context_block.attn.qkv.weight"), 3, dim=0 | |
) | |
sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk( | |
original_state_dict.pop(f"joint_blocks.{i}.x_block.attn.qkv.bias"), 3, dim=0 | |
) | |
context_q_bias, context_k_bias, context_v_bias = torch.chunk( | |
original_state_dict.pop(f"joint_blocks.{i}.context_block.attn.qkv.bias"), 3, dim=0 | |
) | |
converted_state_dict[f"transformer_blocks.{i}.attn.to_q.weight"] = torch.cat([sample_q]) | |
converted_state_dict[f"transformer_blocks.{i}.attn.to_q.bias"] = torch.cat([sample_q_bias]) | |
converted_state_dict[f"transformer_blocks.{i}.attn.to_k.weight"] = torch.cat([sample_k]) | |
converted_state_dict[f"transformer_blocks.{i}.attn.to_k.bias"] = torch.cat([sample_k_bias]) | |
converted_state_dict[f"transformer_blocks.{i}.attn.to_v.weight"] = torch.cat([sample_v]) | |
converted_state_dict[f"transformer_blocks.{i}.attn.to_v.bias"] = torch.cat([sample_v_bias]) | |
converted_state_dict[f"transformer_blocks.{i}.attn.add_q_proj.weight"] = torch.cat([context_q]) | |
converted_state_dict[f"transformer_blocks.{i}.attn.add_q_proj.bias"] = torch.cat([context_q_bias]) | |
converted_state_dict[f"transformer_blocks.{i}.attn.add_k_proj.weight"] = torch.cat([context_k]) | |
converted_state_dict[f"transformer_blocks.{i}.attn.add_k_proj.bias"] = torch.cat([context_k_bias]) | |
converted_state_dict[f"transformer_blocks.{i}.attn.add_v_proj.weight"] = torch.cat([context_v]) | |
converted_state_dict[f"transformer_blocks.{i}.attn.add_v_proj.bias"] = torch.cat([context_v_bias]) | |
# qk norm | |
if has_qk_norm: | |
converted_state_dict[f"transformer_blocks.{i}.attn.norm_q.weight"] = original_state_dict.pop( | |
f"joint_blocks.{i}.x_block.attn.ln_q.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{i}.attn.norm_k.weight"] = original_state_dict.pop( | |
f"joint_blocks.{i}.x_block.attn.ln_k.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{i}.attn.norm_added_q.weight"] = original_state_dict.pop( | |
f"joint_blocks.{i}.context_block.attn.ln_q.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{i}.attn.norm_added_k.weight"] = original_state_dict.pop( | |
f"joint_blocks.{i}.context_block.attn.ln_k.weight" | |
) | |
# output projections. | |
converted_state_dict[f"transformer_blocks.{i}.attn.to_out.0.weight"] = original_state_dict.pop( | |
f"joint_blocks.{i}.x_block.attn.proj.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{i}.attn.to_out.0.bias"] = original_state_dict.pop( | |
f"joint_blocks.{i}.x_block.attn.proj.bias" | |
) | |
if not (i == num_layers - 1): | |
converted_state_dict[f"transformer_blocks.{i}.attn.to_add_out.weight"] = original_state_dict.pop( | |
f"joint_blocks.{i}.context_block.attn.proj.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{i}.attn.to_add_out.bias"] = original_state_dict.pop( | |
f"joint_blocks.{i}.context_block.attn.proj.bias" | |
) | |
# attn2 | |
if i in dual_attention_layers: | |
# Q, K, V | |
sample_q2, sample_k2, sample_v2 = torch.chunk( | |
original_state_dict.pop(f"joint_blocks.{i}.x_block.attn2.qkv.weight"), 3, dim=0 | |
) | |
sample_q2_bias, sample_k2_bias, sample_v2_bias = torch.chunk( | |
original_state_dict.pop(f"joint_blocks.{i}.x_block.attn2.qkv.bias"), 3, dim=0 | |
) | |
converted_state_dict[f"transformer_blocks.{i}.attn2.to_q.weight"] = torch.cat([sample_q2]) | |
converted_state_dict[f"transformer_blocks.{i}.attn2.to_q.bias"] = torch.cat([sample_q2_bias]) | |
converted_state_dict[f"transformer_blocks.{i}.attn2.to_k.weight"] = torch.cat([sample_k2]) | |
converted_state_dict[f"transformer_blocks.{i}.attn2.to_k.bias"] = torch.cat([sample_k2_bias]) | |
converted_state_dict[f"transformer_blocks.{i}.attn2.to_v.weight"] = torch.cat([sample_v2]) | |
converted_state_dict[f"transformer_blocks.{i}.attn2.to_v.bias"] = torch.cat([sample_v2_bias]) | |
# qk norm | |
if has_qk_norm: | |
converted_state_dict[f"transformer_blocks.{i}.attn2.norm_q.weight"] = original_state_dict.pop( | |
f"joint_blocks.{i}.x_block.attn2.ln_q.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{i}.attn2.norm_k.weight"] = original_state_dict.pop( | |
f"joint_blocks.{i}.x_block.attn2.ln_k.weight" | |
) | |
# output projections. | |
converted_state_dict[f"transformer_blocks.{i}.attn2.to_out.0.weight"] = original_state_dict.pop( | |
f"joint_blocks.{i}.x_block.attn2.proj.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{i}.attn2.to_out.0.bias"] = original_state_dict.pop( | |
f"joint_blocks.{i}.x_block.attn2.proj.bias" | |
) | |
# norms. | |
converted_state_dict[f"transformer_blocks.{i}.norm1.linear.weight"] = original_state_dict.pop( | |
f"joint_blocks.{i}.x_block.adaLN_modulation.1.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{i}.norm1.linear.bias"] = original_state_dict.pop( | |
f"joint_blocks.{i}.x_block.adaLN_modulation.1.bias" | |
) | |
if not (i == num_layers - 1): | |
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.weight"] = original_state_dict.pop( | |
f"joint_blocks.{i}.context_block.adaLN_modulation.1.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.bias"] = original_state_dict.pop( | |
f"joint_blocks.{i}.context_block.adaLN_modulation.1.bias" | |
) | |
else: | |
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.weight"] = swap_scale_shift( | |
original_state_dict.pop(f"joint_blocks.{i}.context_block.adaLN_modulation.1.weight"), | |
dim=caption_projection_dim, | |
) | |
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.bias"] = swap_scale_shift( | |
original_state_dict.pop(f"joint_blocks.{i}.context_block.adaLN_modulation.1.bias"), | |
dim=caption_projection_dim, | |
) | |
# ffs. | |
converted_state_dict[f"transformer_blocks.{i}.ff.net.0.proj.weight"] = original_state_dict.pop( | |
f"joint_blocks.{i}.x_block.mlp.fc1.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{i}.ff.net.0.proj.bias"] = original_state_dict.pop( | |
f"joint_blocks.{i}.x_block.mlp.fc1.bias" | |
) | |
converted_state_dict[f"transformer_blocks.{i}.ff.net.2.weight"] = original_state_dict.pop( | |
f"joint_blocks.{i}.x_block.mlp.fc2.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{i}.ff.net.2.bias"] = original_state_dict.pop( | |
f"joint_blocks.{i}.x_block.mlp.fc2.bias" | |
) | |
if not (i == num_layers - 1): | |
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.0.proj.weight"] = original_state_dict.pop( | |
f"joint_blocks.{i}.context_block.mlp.fc1.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.0.proj.bias"] = original_state_dict.pop( | |
f"joint_blocks.{i}.context_block.mlp.fc1.bias" | |
) | |
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.2.weight"] = original_state_dict.pop( | |
f"joint_blocks.{i}.context_block.mlp.fc2.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.2.bias"] = original_state_dict.pop( | |
f"joint_blocks.{i}.context_block.mlp.fc2.bias" | |
) | |
# Final blocks. | |
converted_state_dict["proj_out.weight"] = original_state_dict.pop("final_layer.linear.weight") | |
converted_state_dict["proj_out.bias"] = original_state_dict.pop("final_layer.linear.bias") | |
converted_state_dict["norm_out.linear.weight"] = swap_scale_shift( | |
original_state_dict.pop("final_layer.adaLN_modulation.1.weight"), dim=caption_projection_dim | |
) | |
converted_state_dict["norm_out.linear.bias"] = swap_scale_shift( | |
original_state_dict.pop("final_layer.adaLN_modulation.1.bias"), dim=caption_projection_dim | |
) | |
return converted_state_dict | |
def is_vae_in_checkpoint(original_state_dict): | |
return ("first_stage_model.decoder.conv_in.weight" in original_state_dict) and ( | |
"first_stage_model.encoder.conv_in.weight" in original_state_dict | |
) | |
def get_attn2_layers(state_dict): | |
attn2_layers = [] | |
for key in state_dict.keys(): | |
if "attn2." in key: | |
# Extract the layer number from the key | |
layer_num = int(key.split(".")[1]) | |
attn2_layers.append(layer_num) | |
return tuple(sorted(set(attn2_layers))) | |
def get_pos_embed_max_size(state_dict): | |
num_patches = state_dict["pos_embed"].shape[1] | |
pos_embed_max_size = int(num_patches**0.5) | |
return pos_embed_max_size | |
def get_caption_projection_dim(state_dict): | |
caption_projection_dim = state_dict["context_embedder.weight"].shape[0] | |
return caption_projection_dim | |
def main(args): | |
original_ckpt = load_original_checkpoint(args.checkpoint_path) | |
original_dtype = next(iter(original_ckpt.values())).dtype | |
# Initialize dtype with a default value | |
dtype = None | |
if args.dtype is None: | |
dtype = original_dtype | |
elif args.dtype == "fp16": | |
dtype = torch.float16 | |
elif args.dtype == "bf16": | |
dtype = torch.bfloat16 | |
elif args.dtype == "fp32": | |
dtype = torch.float32 | |
else: | |
raise ValueError(f"Unsupported dtype: {args.dtype}") | |
if dtype != original_dtype: | |
print( | |
f"Checkpoint dtype {original_dtype} does not match requested dtype {dtype}. This can lead to unexpected results, proceed with caution." | |
) | |
num_layers = list(set(int(k.split(".", 2)[1]) for k in original_ckpt if "joint_blocks" in k))[-1] + 1 # noqa: C401 | |
caption_projection_dim = get_caption_projection_dim(original_ckpt) | |
# () for sd3.0; (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) for sd3.5 | |
attn2_layers = get_attn2_layers(original_ckpt) | |
# sd3.5 use qk norm("rms_norm") | |
has_qk_norm = any("ln_q" in key for key in original_ckpt.keys()) | |
# sd3.5 2b use pox_embed_max_size=384 and sd3.0 and sd3.5 8b use 192 | |
pos_embed_max_size = get_pos_embed_max_size(original_ckpt) | |
converted_transformer_state_dict = convert_sd3_transformer_checkpoint_to_diffusers( | |
original_ckpt, num_layers, caption_projection_dim, attn2_layers, has_qk_norm | |
) | |
with CTX(): | |
transformer = SD3Transformer2DModel( | |
sample_size=128, | |
patch_size=2, | |
in_channels=16, | |
joint_attention_dim=4096, | |
num_layers=num_layers, | |
caption_projection_dim=caption_projection_dim, | |
num_attention_heads=num_layers, | |
pos_embed_max_size=pos_embed_max_size, | |
qk_norm="rms_norm" if has_qk_norm else None, | |
dual_attention_layers=attn2_layers, | |
) | |
if is_accelerate_available(): | |
load_model_dict_into_meta(transformer, converted_transformer_state_dict) | |
else: | |
transformer.load_state_dict(converted_transformer_state_dict, strict=True) | |
print("Saving SD3 Transformer in Diffusers format.") | |
transformer.to(dtype).save_pretrained(f"{args.output_path}/transformer") | |
if is_vae_in_checkpoint(original_ckpt): | |
with CTX(): | |
vae = AutoencoderKL.from_config( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
subfolder="vae", | |
latent_channels=16, | |
use_post_quant_conv=False, | |
use_quant_conv=False, | |
scaling_factor=1.5305, | |
shift_factor=0.0609, | |
) | |
converted_vae_state_dict = convert_ldm_vae_checkpoint(original_ckpt, vae.config) | |
if is_accelerate_available(): | |
load_model_dict_into_meta(vae, converted_vae_state_dict) | |
else: | |
vae.load_state_dict(converted_vae_state_dict, strict=True) | |
print("Saving SD3 Autoencoder in Diffusers format.") | |
vae.to(dtype).save_pretrained(f"{args.output_path}/vae") | |
if __name__ == "__main__": | |
main(args) | |