Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import sys | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer, T5EncoderModel | |
from diffusers import ( | |
AutoencoderKLCogVideoX, | |
CogVideoXDDIMScheduler, | |
CogVideoXDPMScheduler, | |
CogVideoXPipeline, | |
CogVideoXTransformer3DModel, | |
) | |
from diffusers.utils.testing_utils import ( | |
floats_tensor, | |
is_peft_available, | |
require_peft_backend, | |
skip_mps, | |
torch_device, | |
) | |
if is_peft_available(): | |
pass | |
sys.path.append(".") | |
from utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set # noqa: E402 | |
class CogVideoXLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests): | |
pipeline_class = CogVideoXPipeline | |
scheduler_cls = CogVideoXDPMScheduler | |
scheduler_kwargs = {"timestep_spacing": "trailing"} | |
scheduler_classes = [CogVideoXDDIMScheduler, CogVideoXDPMScheduler] | |
transformer_kwargs = { | |
"num_attention_heads": 4, | |
"attention_head_dim": 8, | |
"in_channels": 4, | |
"out_channels": 4, | |
"time_embed_dim": 2, | |
"text_embed_dim": 32, | |
"num_layers": 1, | |
"sample_width": 16, | |
"sample_height": 16, | |
"sample_frames": 9, | |
"patch_size": 2, | |
"temporal_compression_ratio": 4, | |
"max_text_seq_length": 16, | |
} | |
transformer_cls = CogVideoXTransformer3DModel | |
vae_kwargs = { | |
"in_channels": 3, | |
"out_channels": 3, | |
"down_block_types": ( | |
"CogVideoXDownBlock3D", | |
"CogVideoXDownBlock3D", | |
"CogVideoXDownBlock3D", | |
"CogVideoXDownBlock3D", | |
), | |
"up_block_types": ( | |
"CogVideoXUpBlock3D", | |
"CogVideoXUpBlock3D", | |
"CogVideoXUpBlock3D", | |
"CogVideoXUpBlock3D", | |
), | |
"block_out_channels": (8, 8, 8, 8), | |
"latent_channels": 4, | |
"layers_per_block": 1, | |
"norm_num_groups": 2, | |
"temporal_compression_ratio": 4, | |
} | |
vae_cls = AutoencoderKLCogVideoX | |
tokenizer_cls, tokenizer_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5" | |
text_encoder_cls, text_encoder_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5" | |
text_encoder_target_modules = ["q", "k", "v", "o"] | |
def output_shape(self): | |
return (1, 9, 16, 16, 3) | |
def get_dummy_inputs(self, with_generator=True): | |
batch_size = 1 | |
sequence_length = 16 | |
num_channels = 4 | |
num_frames = 9 | |
num_latent_frames = 3 # (num_frames - 1) // temporal_compression_ratio + 1 | |
sizes = (2, 2) | |
generator = torch.manual_seed(0) | |
noise = floats_tensor((batch_size, num_latent_frames, num_channels) + sizes) | |
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) | |
pipeline_inputs = { | |
"prompt": "dance monkey", | |
"num_frames": num_frames, | |
"num_inference_steps": 4, | |
"guidance_scale": 6.0, | |
# Cannot reduce because convolution kernel becomes bigger than sample | |
"height": 16, | |
"width": 16, | |
"max_sequence_length": sequence_length, | |
"output_type": "np", | |
} | |
if with_generator: | |
pipeline_inputs.update({"generator": generator}) | |
return noise, input_ids, pipeline_inputs | |
def test_lora_fuse_nan(self): | |
for scheduler_cls in self.scheduler_classes: | |
components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1") | |
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser") | |
# corrupt one LoRA weight with `inf` values | |
with torch.no_grad(): | |
pipe.transformer.transformer_blocks[0].attn1.to_q.lora_A["adapter-1"].weight += float("inf") | |
# with `safe_fusing=True` we should see an Error | |
with self.assertRaises(ValueError): | |
pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=True) | |
# without we should not see an error, but every image will be black | |
pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=False) | |
out = pipe( | |
"test", num_inference_steps=2, max_sequence_length=inputs["max_sequence_length"], output_type="np" | |
)[0] | |
self.assertTrue(np.isnan(out).all()) | |
def test_simple_inference_with_text_lora_denoiser_fused_multi(self): | |
super().test_simple_inference_with_text_lora_denoiser_fused_multi(expected_atol=9e-3) | |
def test_simple_inference_with_text_denoiser_lora_unfused(self): | |
super().test_simple_inference_with_text_denoiser_lora_unfused(expected_atol=9e-3) | |
def test_simple_inference_with_text_denoiser_block_scale(self): | |
pass | |
def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self): | |
pass | |
def test_modify_padding_mode(self): | |
pass | |
def test_simple_inference_with_partial_text_lora(self): | |
pass | |
def test_simple_inference_with_text_lora(self): | |
pass | |
def test_simple_inference_with_text_lora_and_scale(self): | |
pass | |
def test_simple_inference_with_text_lora_fused(self): | |
pass | |
def test_simple_inference_with_text_lora_save_load(self): | |
pass | |