Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import os | |
import sys | |
import tempfile | |
import unittest | |
import numpy as np | |
import safetensors.torch | |
import torch | |
from transformers import AutoTokenizer, CLIPTextModel, CLIPTokenizer, T5EncoderModel | |
from diffusers import FlowMatchEulerDiscreteScheduler, FluxPipeline, FluxTransformer2DModel | |
from diffusers.utils.testing_utils import ( | |
floats_tensor, | |
is_peft_available, | |
nightly, | |
numpy_cosine_similarity_distance, | |
require_peft_backend, | |
require_torch_gpu, | |
slow, | |
torch_device, | |
) | |
if is_peft_available(): | |
from peft.utils import get_peft_model_state_dict | |
sys.path.append(".") | |
from utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set # noqa: E402 | |
class FluxLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests): | |
pipeline_class = FluxPipeline | |
scheduler_cls = FlowMatchEulerDiscreteScheduler() | |
scheduler_kwargs = {} | |
scheduler_classes = [FlowMatchEulerDiscreteScheduler] | |
transformer_kwargs = { | |
"patch_size": 1, | |
"in_channels": 4, | |
"num_layers": 1, | |
"num_single_layers": 1, | |
"attention_head_dim": 16, | |
"num_attention_heads": 2, | |
"joint_attention_dim": 32, | |
"pooled_projection_dim": 32, | |
"axes_dims_rope": [4, 4, 8], | |
} | |
transformer_cls = FluxTransformer2DModel | |
vae_kwargs = { | |
"sample_size": 32, | |
"in_channels": 3, | |
"out_channels": 3, | |
"block_out_channels": (4,), | |
"layers_per_block": 1, | |
"latent_channels": 1, | |
"norm_num_groups": 1, | |
"use_quant_conv": False, | |
"use_post_quant_conv": False, | |
"shift_factor": 0.0609, | |
"scaling_factor": 1.5035, | |
} | |
has_two_text_encoders = True | |
tokenizer_cls, tokenizer_id = CLIPTokenizer, "peft-internal-testing/tiny-clip-text-2" | |
tokenizer_2_cls, tokenizer_2_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5" | |
text_encoder_cls, text_encoder_id = CLIPTextModel, "peft-internal-testing/tiny-clip-text-2" | |
text_encoder_2_cls, text_encoder_2_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5" | |
def output_shape(self): | |
return (1, 8, 8, 3) | |
def get_dummy_inputs(self, with_generator=True): | |
batch_size = 1 | |
sequence_length = 10 | |
num_channels = 4 | |
sizes = (32, 32) | |
generator = torch.manual_seed(0) | |
noise = floats_tensor((batch_size, num_channels) + sizes) | |
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) | |
pipeline_inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"num_inference_steps": 4, | |
"guidance_scale": 0.0, | |
"height": 8, | |
"width": 8, | |
"output_type": "np", | |
} | |
if with_generator: | |
pipeline_inputs.update({"generator": generator}) | |
return noise, input_ids, pipeline_inputs | |
def test_with_alpha_in_state_dict(self): | |
components, _, denoiser_lora_config = self.get_dummy_components(FlowMatchEulerDiscreteScheduler) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue(output_no_lora.shape == self.output_shape) | |
pipe.transformer.add_adapter(denoiser_lora_config) | |
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer") | |
images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
denoiser_state_dict = get_peft_model_state_dict(pipe.transformer) | |
self.pipeline_class.save_lora_weights(tmpdirname, transformer_lora_layers=denoiser_state_dict) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))) | |
pipe.unload_lora_weights() | |
pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")) | |
# modify the state dict to have alpha values following | |
# https://huggingface.co/TheLastBen/Jon_Snow_Flux_LoRA/blob/main/jon_snow.safetensors | |
state_dict_with_alpha = safetensors.torch.load_file( | |
os.path.join(tmpdirname, "pytorch_lora_weights.safetensors") | |
) | |
alpha_dict = {} | |
for k, v in state_dict_with_alpha.items(): | |
# only do for `transformer` and for the k projections -- should be enough to test. | |
if "transformer" in k and "to_k" in k and "lora_A" in k: | |
alpha_dict[f"{k}.alpha"] = float(torch.randint(10, 100, size=())) | |
state_dict_with_alpha.update(alpha_dict) | |
images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser") | |
pipe.unload_lora_weights() | |
pipe.load_lora_weights(state_dict_with_alpha) | |
images_lora_with_alpha = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue( | |
np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3), | |
"Loading from saved checkpoints should give same results.", | |
) | |
self.assertFalse(np.allclose(images_lora_with_alpha, images_lora, atol=1e-3, rtol=1e-3)) | |
def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self): | |
pass | |
def test_modify_padding_mode(self): | |
pass | |
# TODO (DN6, sayakpaul): move these tests to a beefier GPU | |
class FluxLoRAIntegrationTests(unittest.TestCase): | |
"""internal note: The integration slices were obtained on audace. | |
torch: 2.6.0.dev20241006+cu124 with CUDA 12.5. Need the same setup for the | |
assertions to pass. | |
""" | |
num_inference_steps = 10 | |
seed = 0 | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
self.pipeline = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_flux_the_last_ben(self): | |
self.pipeline.load_lora_weights("TheLastBen/Jon_Snow_Flux_LoRA", weight_name="jon_snow.safetensors") | |
self.pipeline.fuse_lora() | |
self.pipeline.unload_lora_weights() | |
self.pipeline.enable_model_cpu_offload() | |
prompt = "jon snow eating pizza with ketchup" | |
out = self.pipeline( | |
prompt, | |
num_inference_steps=self.num_inference_steps, | |
guidance_scale=4.0, | |
output_type="np", | |
generator=torch.manual_seed(self.seed), | |
).images | |
out_slice = out[0, -3:, -3:, -1].flatten() | |
expected_slice = np.array([0.1855, 0.1855, 0.1836, 0.1855, 0.1836, 0.1875, 0.1777, 0.1758, 0.2246]) | |
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice) | |
assert max_diff < 1e-3 | |
def test_flux_kohya(self): | |
self.pipeline.load_lora_weights("Norod78/brain-slug-flux") | |
self.pipeline.fuse_lora() | |
self.pipeline.unload_lora_weights() | |
self.pipeline.enable_model_cpu_offload() | |
prompt = "The cat with a brain slug earring" | |
out = self.pipeline( | |
prompt, | |
num_inference_steps=self.num_inference_steps, | |
guidance_scale=4.5, | |
output_type="np", | |
generator=torch.manual_seed(self.seed), | |
).images | |
out_slice = out[0, -3:, -3:, -1].flatten() | |
expected_slice = np.array([0.6367, 0.6367, 0.6328, 0.6367, 0.6328, 0.6289, 0.6367, 0.6328, 0.6484]) | |
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice) | |
assert max_diff < 1e-3 | |
def test_flux_kohya_with_text_encoder(self): | |
self.pipeline.load_lora_weights("cocktailpeanut/optimus", weight_name="optimus.safetensors") | |
self.pipeline.fuse_lora() | |
self.pipeline.unload_lora_weights() | |
self.pipeline.enable_model_cpu_offload() | |
prompt = "optimus is cleaning the house with broomstick" | |
out = self.pipeline( | |
prompt, | |
num_inference_steps=self.num_inference_steps, | |
guidance_scale=4.5, | |
output_type="np", | |
generator=torch.manual_seed(self.seed), | |
).images | |
out_slice = out[0, -3:, -3:, -1].flatten() | |
expected_slice = np.array([0.4023, 0.4023, 0.4023, 0.3965, 0.3984, 0.3965, 0.3926, 0.3906, 0.4219]) | |
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice) | |
assert max_diff < 1e-3 | |
def test_flux_xlabs(self): | |
self.pipeline.load_lora_weights("XLabs-AI/flux-lora-collection", weight_name="disney_lora.safetensors") | |
self.pipeline.fuse_lora() | |
self.pipeline.unload_lora_weights() | |
self.pipeline.enable_model_cpu_offload() | |
prompt = "A blue jay standing on a large basket of rainbow macarons, disney style" | |
out = self.pipeline( | |
prompt, | |
num_inference_steps=self.num_inference_steps, | |
guidance_scale=3.5, | |
output_type="np", | |
generator=torch.manual_seed(self.seed), | |
).images | |
out_slice = out[0, -3:, -3:, -1].flatten() | |
expected_slice = np.array([0.3965, 0.4180, 0.4434, 0.4082, 0.4375, 0.4590, 0.4141, 0.4375, 0.4980]) | |
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice) | |
assert max_diff < 1e-3 | |