DimensionX / diffusers /tests /lora /test_lora_layers_flux.py
ι™ˆη‘•
Add diffusers code
bb63937
raw
history blame
10.6 kB
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import os
import sys
import tempfile
import unittest
import numpy as np
import safetensors.torch
import torch
from transformers import AutoTokenizer, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import FlowMatchEulerDiscreteScheduler, FluxPipeline, FluxTransformer2DModel
from diffusers.utils.testing_utils import (
floats_tensor,
is_peft_available,
nightly,
numpy_cosine_similarity_distance,
require_peft_backend,
require_torch_gpu,
slow,
torch_device,
)
if is_peft_available():
from peft.utils import get_peft_model_state_dict
sys.path.append(".")
from utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set # noqa: E402
@require_peft_backend
class FluxLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
pipeline_class = FluxPipeline
scheduler_cls = FlowMatchEulerDiscreteScheduler()
scheduler_kwargs = {}
scheduler_classes = [FlowMatchEulerDiscreteScheduler]
transformer_kwargs = {
"patch_size": 1,
"in_channels": 4,
"num_layers": 1,
"num_single_layers": 1,
"attention_head_dim": 16,
"num_attention_heads": 2,
"joint_attention_dim": 32,
"pooled_projection_dim": 32,
"axes_dims_rope": [4, 4, 8],
}
transformer_cls = FluxTransformer2DModel
vae_kwargs = {
"sample_size": 32,
"in_channels": 3,
"out_channels": 3,
"block_out_channels": (4,),
"layers_per_block": 1,
"latent_channels": 1,
"norm_num_groups": 1,
"use_quant_conv": False,
"use_post_quant_conv": False,
"shift_factor": 0.0609,
"scaling_factor": 1.5035,
}
has_two_text_encoders = True
tokenizer_cls, tokenizer_id = CLIPTokenizer, "peft-internal-testing/tiny-clip-text-2"
tokenizer_2_cls, tokenizer_2_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5"
text_encoder_cls, text_encoder_id = CLIPTextModel, "peft-internal-testing/tiny-clip-text-2"
text_encoder_2_cls, text_encoder_2_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5"
@property
def output_shape(self):
return (1, 8, 8, 3)
def get_dummy_inputs(self, with_generator=True):
batch_size = 1
sequence_length = 10
num_channels = 4
sizes = (32, 32)
generator = torch.manual_seed(0)
noise = floats_tensor((batch_size, num_channels) + sizes)
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
pipeline_inputs = {
"prompt": "A painting of a squirrel eating a burger",
"num_inference_steps": 4,
"guidance_scale": 0.0,
"height": 8,
"width": 8,
"output_type": "np",
}
if with_generator:
pipeline_inputs.update({"generator": generator})
return noise, input_ids, pipeline_inputs
def test_with_alpha_in_state_dict(self):
components, _, denoiser_lora_config = self.get_dummy_components(FlowMatchEulerDiscreteScheduler)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(output_no_lora.shape == self.output_shape)
pipe.transformer.add_adapter(denoiser_lora_config)
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
with tempfile.TemporaryDirectory() as tmpdirname:
denoiser_state_dict = get_peft_model_state_dict(pipe.transformer)
self.pipeline_class.save_lora_weights(tmpdirname, transformer_lora_layers=denoiser_state_dict)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
pipe.unload_lora_weights()
pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))
# modify the state dict to have alpha values following
# https://huggingface.co/TheLastBen/Jon_Snow_Flux_LoRA/blob/main/jon_snow.safetensors
state_dict_with_alpha = safetensors.torch.load_file(
os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")
)
alpha_dict = {}
for k, v in state_dict_with_alpha.items():
# only do for `transformer` and for the k projections -- should be enough to test.
if "transformer" in k and "to_k" in k and "lora_A" in k:
alpha_dict[f"{k}.alpha"] = float(torch.randint(10, 100, size=()))
state_dict_with_alpha.update(alpha_dict)
images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser")
pipe.unload_lora_weights()
pipe.load_lora_weights(state_dict_with_alpha)
images_lora_with_alpha = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(
np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
"Loading from saved checkpoints should give same results.",
)
self.assertFalse(np.allclose(images_lora_with_alpha, images_lora, atol=1e-3, rtol=1e-3))
@unittest.skip("Not supported in Flux.")
def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
pass
@unittest.skip("Not supported in Flux.")
def test_modify_padding_mode(self):
pass
@slow
@nightly
@require_torch_gpu
@require_peft_backend
@unittest.skip("We cannot run inference on this model with the current CI hardware")
# TODO (DN6, sayakpaul): move these tests to a beefier GPU
class FluxLoRAIntegrationTests(unittest.TestCase):
"""internal note: The integration slices were obtained on audace.
torch: 2.6.0.dev20241006+cu124 with CUDA 12.5. Need the same setup for the
assertions to pass.
"""
num_inference_steps = 10
seed = 0
def setUp(self):
super().setUp()
gc.collect()
torch.cuda.empty_cache()
self.pipeline = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_flux_the_last_ben(self):
self.pipeline.load_lora_weights("TheLastBen/Jon_Snow_Flux_LoRA", weight_name="jon_snow.safetensors")
self.pipeline.fuse_lora()
self.pipeline.unload_lora_weights()
self.pipeline.enable_model_cpu_offload()
prompt = "jon snow eating pizza with ketchup"
out = self.pipeline(
prompt,
num_inference_steps=self.num_inference_steps,
guidance_scale=4.0,
output_type="np",
generator=torch.manual_seed(self.seed),
).images
out_slice = out[0, -3:, -3:, -1].flatten()
expected_slice = np.array([0.1855, 0.1855, 0.1836, 0.1855, 0.1836, 0.1875, 0.1777, 0.1758, 0.2246])
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice)
assert max_diff < 1e-3
def test_flux_kohya(self):
self.pipeline.load_lora_weights("Norod78/brain-slug-flux")
self.pipeline.fuse_lora()
self.pipeline.unload_lora_weights()
self.pipeline.enable_model_cpu_offload()
prompt = "The cat with a brain slug earring"
out = self.pipeline(
prompt,
num_inference_steps=self.num_inference_steps,
guidance_scale=4.5,
output_type="np",
generator=torch.manual_seed(self.seed),
).images
out_slice = out[0, -3:, -3:, -1].flatten()
expected_slice = np.array([0.6367, 0.6367, 0.6328, 0.6367, 0.6328, 0.6289, 0.6367, 0.6328, 0.6484])
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice)
assert max_diff < 1e-3
def test_flux_kohya_with_text_encoder(self):
self.pipeline.load_lora_weights("cocktailpeanut/optimus", weight_name="optimus.safetensors")
self.pipeline.fuse_lora()
self.pipeline.unload_lora_weights()
self.pipeline.enable_model_cpu_offload()
prompt = "optimus is cleaning the house with broomstick"
out = self.pipeline(
prompt,
num_inference_steps=self.num_inference_steps,
guidance_scale=4.5,
output_type="np",
generator=torch.manual_seed(self.seed),
).images
out_slice = out[0, -3:, -3:, -1].flatten()
expected_slice = np.array([0.4023, 0.4023, 0.4023, 0.3965, 0.3984, 0.3965, 0.3926, 0.3906, 0.4219])
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice)
assert max_diff < 1e-3
def test_flux_xlabs(self):
self.pipeline.load_lora_weights("XLabs-AI/flux-lora-collection", weight_name="disney_lora.safetensors")
self.pipeline.fuse_lora()
self.pipeline.unload_lora_weights()
self.pipeline.enable_model_cpu_offload()
prompt = "A blue jay standing on a large basket of rainbow macarons, disney style"
out = self.pipeline(
prompt,
num_inference_steps=self.num_inference_steps,
guidance_scale=3.5,
output_type="np",
generator=torch.manual_seed(self.seed),
).images
out_slice = out[0, -3:, -3:, -1].flatten()
expected_slice = np.array([0.3965, 0.4180, 0.4434, 0.4082, 0.4375, 0.4590, 0.4141, 0.4375, 0.4980])
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice)
assert max_diff < 1e-3