En2Kab / app.py
Sifal's picture
Update app.py
69dafc8
raw
history blame
11.6 kB
import torch
import torch.nn as nn
from torch import Tensor
from torch.nn import Transformer
import math
# helper Module that adds positional encoding to the token embedding to introduce a notion of word order.
class PositionalEncoding(nn.Module):
def __init__(self,
emb_size: int,
dropout: float,
maxlen: int = 5000):
super(PositionalEncoding, self).__init__()
den = torch.exp(- torch.arange(0, emb_size, 2)* math.log(10000) / emb_size)
pos = torch.arange(0, maxlen).reshape(maxlen, 1)
pos_embedding = torch.zeros((maxlen, emb_size))
pos_embedding[:, 0::2] = torch.sin(pos * den)
pos_embedding[:, 1::2] = torch.cos(pos * den)
pos_embedding = pos_embedding.unsqueeze(-2)
self.dropout = nn.Dropout(dropout)
self.register_buffer('pos_embedding', pos_embedding)
def forward(self, token_embedding: Tensor):
return self.dropout(token_embedding + self.pos_embedding[:token_embedding.size(0), :])
# helper Module to convert tensor of input indices into corresponding tensor of token embeddings
class TokenEmbedding(nn.Module):
def __init__(self, vocab_size: int, emb_size):
super(TokenEmbedding, self).__init__()
self.embedding = nn.Embedding(vocab_size, emb_size)
self.emb_size = emb_size
def forward(self, tokens: Tensor):
return self.embedding(tokens.long()) * math.sqrt(self.emb_size)
class Seq2SeqTransformer(nn.Module):
def __init__(self,
num_encoder_layers: int,
num_decoder_layers: int,
emb_size: int,
nhead: int,
src_vocab_size: int,
tgt_vocab_size: int,
dim_feedforward: int = 512,
dropout: float = 0.1):
super(Seq2SeqTransformer, self).__init__()
self.transformer = Transformer(d_model=emb_size,
nhead=nhead,
num_encoder_layers=num_encoder_layers,
num_decoder_layers=num_decoder_layers,
dim_feedforward=dim_feedforward,
dropout=dropout,
batch_first=True)
self.generator = nn.Linear(emb_size, tgt_vocab_size)
self.src_tok_emb = TokenEmbedding(src_vocab_size, emb_size)
self.tgt_tok_emb = TokenEmbedding(tgt_vocab_size, emb_size)
self.positional_encoding = PositionalEncoding(
emb_size, dropout=dropout)
def forward(self,
src: Tensor,
trg: Tensor,
src_mask: Tensor,
tgt_mask: Tensor,
src_padding_mask: Tensor,
tgt_padding_mask: Tensor,
memory_key_padding_mask: Tensor):
src_emb = self.positional_encoding(self.src_tok_emb(src))
tgt_emb = self.positional_encoding(self.tgt_tok_emb(trg))
outs = self.transformer(src_emb, tgt_emb, src_mask, tgt_mask, None,
src_padding_mask, tgt_padding_mask, memory_key_padding_mask)
return self.generator(outs)
def encode(self, src: Tensor, src_mask: Tensor):
return self.transformer.encoder(self.positional_encoding(
self.src_tok_emb(src)), src_mask)
def decode(self, tgt: Tensor, memory: Tensor, tgt_mask: Tensor):
return self.transformer.decoder(self.positional_encoding(
self.tgt_tok_emb(tgt)), memory,
tgt_mask)
import yaml
from transformers import AutoTokenizer
from transformers import PreTrainedTokenizerFast
from tokenizers.processors import TemplateProcessing
def addPreprocessing(tokenizer):
tokenizer._tokenizer.post_processor = TemplateProcessing(
single=tokenizer.bos_token + " $A " + tokenizer.eos_token,
special_tokens=[(tokenizer.eos_token, tokenizer.eos_token_id), (tokenizer.bos_token, tokenizer.bos_token_id)])
def load_model(model_checkpoint_dir='model.pt',config_dir='config.yaml'):
with open(config_dir, 'r') as yaml_file:
loaded_model_params = yaml.safe_load(yaml_file)
# Create a new instance of the model with the loaded configuration
model = Seq2SeqTransformer(
loaded_model_params["num_encoder_layers"],
loaded_model_params["num_decoder_layers"],
loaded_model_params["emb_size"],
loaded_model_params["nhead"],
loaded_model_params["source_vocab_size"],
loaded_model_params["target_vocab_size"],
loaded_model_params["ffn_hid_dim"]
)
checkpoint = torch.load(model_checkpoint_dir) if torch.cuda.is_available() else torch.load(model_checkpoint_dir,map_location=torch.device('cpu'))
model.load_state_dict(checkpoint)
return model
def greedy_decode(model, src, src_mask, max_len, start_symbol):
# Move inputs to the device
src = src.to(device)
src_mask = src_mask.to(device)
# Encode the source sequence
memory = model.encode(src, src_mask)
# Initialize the target sequence with the start symbol
ys = torch.tensor([[start_symbol]]).type(torch.long).to(device)
for i in range(max_len - 1):
memory = memory.to(device)
# Create a target mask for autoregressive decoding
tgt_mask = torch.tril(torch.full((ys.size(1), ys.size(1)), float('-inf'), device=device), diagonal=-1).transpose(0, 1).to(device)
# Decode the target sequence
out = model.decode(ys, memory, tgt_mask)
# Generate the probability distribution over the vocabulary
prob = model.generator(out[:, -1])
# Select the next word with the highest probability
_, next_word = torch.max(prob, dim=1)
next_word = next_word.item()
# Append the next word to the target sequence
ys = torch.cat([ys,
torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=1)
# Check if the generated word is the end-of-sequence token
if next_word == target_tokenizer.eos_token_id:
break
return ys
def beam_search_decode(model, src, src_mask, max_len, start_symbol, beam_size ,length_penalty):
# Move inputs to the device
src = src.to(device)
src_mask = src_mask.to(device)
# Encode the source sequence
memory = model.encode(src, src_mask) # b * seqlen_src * hdim
# Initialize the beams (sequences, score)
beams = [(torch.tensor([[start_symbol]]).type(torch.long).to(device), 0)]
for i in range(max_len - 1):
new_beams = []
complete_beams = []
cbl = []
for ys, score in beams:
# Create a target mask for autoregressive decoding
tgt_mask = torch.tril(torch.full((ys.size(1), ys.size(1)), float('-inf'), device=device), diagonal=-1).transpose(0, 1).to(device)
# Decode the target sequence
out = model.decode(ys, memory, tgt_mask) # b * seqlen_tgt * hdim
#print(f'shape out {out.shape}')
# Generate the probability distribution over the vocabulary
prob = model.generator(out[:, -1]) # b * tgt_vocab_size
#print(f'shape prob {prob.shape}')
# Get the top beam_size candidates for the next word
_, top_indices = torch.topk(prob, beam_size, dim=1) # b * beam_size
for j,next_word in enumerate(top_indices[0]):
next_word = next_word.item()
# Append the next word to the target sequence
new_ys = torch.cat([ys, torch.full((1, 1), fill_value=next_word, dtype=src.dtype).to(device)], dim=1)
length_factor = (5 + j / 6) ** length_penalty
new_score = (score + prob[0][next_word].item()) / length_factor
if next_word == target_tokenizer.eos_token_id:
complete_beams.append((new_ys, new_score))
else:
new_beams.append((new_ys, new_score))
# Sort the beams by score and select the top beam_size beams
new_beams.sort(key=lambda x: x[1], reverse=True)
try:
beams = new_beams[:beam_size]
except:
beams = new_beams
beams = new_beams + complete_beams
beams.sort(key=lambda x: x[1], reverse=True)
best_beam = beams[0][0]
return best_beam
def translate(src_sentence: str, strategy:str = 'greedy' , lenght_extend :int = 5, beam_size: int = 5, length_penalty:float = 0.6):
assert strategy in ['greedy','beam search'], 'the strategy for decoding has to be either greedy or beam search'
assert lenght_extend >= 1, 'lenght_extend must be superior or equal to one'
# Tokenize the source sentence
src = source_tokenizer(src_sentence, **token_config)['input_ids']
num_tokens = src.shape[1]
# Create a source mask
src_mask = (torch.zeros(num_tokens, num_tokens)).type(torch.bool)
if strategy == 'greedy':
tgt_tokens = greedy_decode(model, src, src_mask, max_len=num_tokens + lenght_extend, start_symbol=target_tokenizer.bos_token_id).flatten()
# Generate the target tokens using beam search decoding
else:
assert length_penalty >= 0 , 'lenght penelity must be superior or equal to zero'
assert beam_size >= 1, 'beam size must superior or equal to one'
tgt_tokens = beam_search_decode(model, src, src_mask, max_len=num_tokens + lenght_extend, start_symbol=target_tokenizer.bos_token_id, beam_size=beam_size,length_penalty=length_penalty).flatten()
# Decode the target tokens and clean up the result
return target_tokenizer.decode(tgt_tokens, clean_up_tokenization_spaces=True, skip_special_tokens=True)
special_tokens = {'unk_token':"[UNK]",
'cls_token':"[CLS]",
'eos_token': '[EOS]',
'sep_token':"[SEP]",
'pad_token':"[PAD]",
'mask_token':"[MASK]",
'bos_token':"[BOS]"}
source_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased", **special_tokens)
target_tokenizer = PreTrainedTokenizerFast.from_pretrained('Sifal/E2KT')
addPreprocessing(source_tokenizer)
addPreprocessing(target_tokenizer)
token_config = {
"add_special_tokens": True,
"return_tensors": 'pt',
}
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = load_model()
model.to(device)
model.eval()
import gradio as gr
iface = gr.Interface(
fn=translate,
inputs=[
gr.Textbox(label="Input sentence"),
gr.Radio(['greedy', 'beam search'], label="Decoding Strategy"),
gr.Number(value=5,label="Max tokens",precision=0),
gr.Number(value=5,label="Beam Size (for beam search)",precision=0),
gr.Number(value=0.6,label="Length Penalty (for beam search)")
],
outputs=gr.Textbox(label="Translation"),
examples=[
['Is it true that you were sick?', "greedy", 5,5,0.6],
['This will probably not translate great, as it contains words not commonly used and is somewhat lenghty.', "greedy", 5,5,0.6],
['Do not be afraid to look into the future.', "greedy", 5,5,0.6],
['The book is on the table.', 'beam search', 6,6,0.7]],
cache_examples=True,
title="Translation Interface for English to Kabyle",
description="Translate text using a pre-trained model.",
)
# Launch the Gradio interface
iface.launch()