Spaces:
Sleeping
Sleeping
Update app.py
#1
by
SilviuMatei
- opened
app.py
CHANGED
@@ -1,61 +1,81 @@
|
|
1 |
-
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
|
2 |
-
import datetime
|
3 |
import requests
|
4 |
-
import
|
|
|
5 |
import yaml
|
6 |
from tools.final_answer import FinalAnswerTool
|
7 |
|
8 |
-
from Gradio_UI import GradioUI
|
9 |
-
|
10 |
-
# Below is an example of a tool that does nothing. Amaze us with your creativity !
|
11 |
@tool
|
12 |
-
def
|
13 |
-
#Keep this format for the description / args / args description but feel free to modify the tool
|
14 |
-
"""A tool that does nothing yet
|
15 |
-
Args:
|
16 |
-
arg1: the first argument
|
17 |
-
arg2: the second argument
|
18 |
"""
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
"""
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
|
|
37 |
final_answer = FinalAnswerTool()
|
38 |
-
|
39 |
-
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
|
40 |
-
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
|
41 |
-
|
42 |
model = HfApiModel(
|
43 |
-
max_tokens=2096,
|
44 |
-
temperature=0.5,
|
45 |
-
model_id='Qwen/Qwen2.5-Coder-32B-Instruct'
|
46 |
-
custom_role_conversions=None,
|
47 |
)
|
48 |
|
49 |
-
|
50 |
-
# Import tool from Hub
|
51 |
-
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
|
52 |
-
|
53 |
with open("prompts.yaml", 'r') as stream:
|
54 |
prompt_templates = yaml.safe_load(stream)
|
55 |
|
56 |
agent = CodeAgent(
|
57 |
model=model,
|
58 |
-
tools=[final_answer],
|
59 |
max_steps=6,
|
60 |
verbosity_level=1,
|
61 |
grammar=None,
|
@@ -65,5 +85,4 @@ agent = CodeAgent(
|
|
65 |
prompt_templates=prompt_templates
|
66 |
)
|
67 |
|
68 |
-
|
69 |
-
GradioUI(agent).launch()
|
|
|
1 |
+
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool
|
|
|
2 |
import requests
|
3 |
+
from bs4 import BeautifulSoup
|
4 |
+
import pandas as pd
|
5 |
import yaml
|
6 |
from tools.final_answer import FinalAnswerTool
|
7 |
|
|
|
|
|
|
|
8 |
@tool
|
9 |
+
def amazon_product_scraper(search_url: str) -> tuple[pd.DataFrame, str]:
|
|
|
|
|
|
|
|
|
|
|
10 |
"""
|
11 |
+
Scrapes Amazon search results for product titles, prices, delivery fees, and links.
|
12 |
+
|
13 |
+
Arguments:
|
14 |
+
search_url (str): The URL of the Amazon search results page.
|
15 |
+
|
16 |
+
Returns:
|
17 |
+
tuple[pd.DataFrame, str]: A tuple containing a sorted Pandas DataFrame of products and a recommendation string.
|
18 |
"""
|
19 |
+
headers = {
|
20 |
+
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36"
|
21 |
+
}
|
22 |
+
|
23 |
+
response = requests.get(search_url, headers=headers)
|
24 |
+
if response.status_code != 200:
|
25 |
+
return None, "Failed to retrieve Amazon results. Amazon may be blocking requests."
|
26 |
+
|
27 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
28 |
+
|
29 |
+
product_data = []
|
30 |
+
|
31 |
+
for item in soup.select("div[data-asin]"):
|
32 |
+
title_tag = item.select_one("h2 a")
|
33 |
+
price_tag = item.select_one("span.a-price-whole")
|
34 |
+
delivery_tag = item.select_one("span.s-align-children-center")
|
35 |
+
|
36 |
+
if title_tag and price_tag:
|
37 |
+
title = title_tag.text.strip()
|
38 |
+
price = price_tag.text.strip().replace(',', '') # Normalize prices
|
39 |
+
delivery = delivery_tag.text.strip() if delivery_tag else "Free"
|
40 |
+
link = "https://www.amazon.com" + title_tag["href"]
|
41 |
+
|
42 |
+
product_data.append({
|
43 |
+
"Title": title,
|
44 |
+
"Price": float(price) if price.isnumeric() else None,
|
45 |
+
"Delivery": delivery,
|
46 |
+
"Link": link
|
47 |
+
})
|
48 |
+
|
49 |
+
# Filter out products with no price and sort by price
|
50 |
+
product_data = [p for p in product_data if p["Price"] is not None]
|
51 |
+
product_data.sort(key=lambda x: x["Price"])
|
52 |
+
|
53 |
+
# Convert to DataFrame for better visualization
|
54 |
+
df = pd.DataFrame(product_data)
|
55 |
+
|
56 |
+
# Recommendation logic
|
57 |
+
best_deal = df.iloc[0] if not df.empty else None
|
58 |
+
recommendation = ""
|
59 |
+
if best_deal is not None:
|
60 |
+
recommendation = f"Best deal: {best_deal['Title']} at ${best_deal['Price']} with {best_deal['Delivery']} (Link: {best_deal['Link']})"
|
61 |
+
|
62 |
+
return df, recommendation
|
63 |
|
64 |
+
# Define the Agent
|
65 |
final_answer = FinalAnswerTool()
|
|
|
|
|
|
|
|
|
66 |
model = HfApiModel(
|
67 |
+
max_tokens=2096,
|
68 |
+
temperature=0.5,
|
69 |
+
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
|
70 |
+
custom_role_conversions=None,
|
71 |
)
|
72 |
|
|
|
|
|
|
|
|
|
73 |
with open("prompts.yaml", 'r') as stream:
|
74 |
prompt_templates = yaml.safe_load(stream)
|
75 |
|
76 |
agent = CodeAgent(
|
77 |
model=model,
|
78 |
+
tools=[final_answer, amazon_product_scraper], # Adding the scraper tool
|
79 |
max_steps=6,
|
80 |
verbosity_level=1,
|
81 |
grammar=None,
|
|
|
85 |
prompt_templates=prompt_templates
|
86 |
)
|
87 |
|
88 |
+
GradioUI(agent).launch()
|
|