|
from transformers import AutoModelForCausalLM |
|
from datasets import load_dataset |
|
from transformers import AutoProcessor |
|
import torch |
|
import json |
|
import time |
|
from tqdm import tqdm |
|
|
|
val_dataset = load_dataset("SimulaMet-HOST/Kvasir-VQA")['raw'].select(range(5)) |
|
predictions = [] |
|
|
|
gpu_name = torch.cuda.get_device_name( |
|
0) if torch.cuda.is_available() else "cpu" |
|
device = "CUDA" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
def get_mem(): return torch.cuda.memory_allocated(device) / \ |
|
(1024 ** 2) if torch.cuda.is_available() else 0 |
|
|
|
|
|
initial_mem = get_mem() |
|
|
|
|
|
|
|
SUBMISSION_INFO = { |
|
|
|
|
|
|
|
"Participant_Names": "Sushant Gautam, Steven Hicks and Vajita Thambawita", |
|
"Affiliations": "SimulaMet", |
|
"Contact_emails": ["[email protected]", "[email protected]"], |
|
|
|
"Team_Name": "SimulaMetmedVQA Rangers", |
|
"Country": "Norway", |
|
"Notes_to_organizers": ''' |
|
eg, We have finetund XXX model |
|
This is optional . . |
|
Used data augmentations . . |
|
Custom info about the model . . |
|
Any insights. . |
|
+ Any informal things you like to share about this submission. |
|
''' |
|
} |
|
|
|
|
|
|
|
model_hf = AutoModelForCausalLM.from_pretrained( |
|
"SushantGautam/Florence-2-vqa-demo", trust_remote_code=True).to(device) |
|
processor = AutoProcessor.from_pretrained( |
|
"microsoft/Florence-2-base-ft", trust_remote_code=True) |
|
|
|
model_hf.eval() |
|
|
|
|
|
start_time, post_model_mem = time.time(), get_mem() |
|
total_time, final_mem = round( |
|
time.time() - start_time, 4), round(get_mem() - post_model_mem, 2) |
|
model_mem_used = round(post_model_mem - initial_mem, 2) |
|
|
|
for idx, ex in enumerate(tqdm(val_dataset, desc="Validating")): |
|
question = ex["question"] |
|
image = ex["image"].convert( |
|
"RGB") if ex["image"].mode != "RGB" else ex["image"] |
|
|
|
|
|
|
|
|
|
inputs = processor(text=[question], images=[image], |
|
return_tensors="pt", padding=True) |
|
inputs = {k: v.to(device) for k, v in inputs.items() |
|
if k not in ['labels', 'attention_mask']} |
|
|
|
|
|
with torch.no_grad(): |
|
output = model_hf.generate(**inputs) |
|
answer = processor.tokenizer.decode(output[0], skip_special_tokens=True) |
|
|
|
|
|
|
|
|
|
|
|
assert isinstance( |
|
answer, str), f"Generated answer at index {idx} is not a string" |
|
|
|
predictions.append( |
|
{"index": idx, "img_id": ex["img_id"], "question": ex["question"], "answer": answer}) |
|
|
|
|
|
assert len(predictions) == len( |
|
val_dataset), "Mismatch between predictions and dataset length" |
|
|
|
total_time, final_mem = round( |
|
time.time() - start_time, 4), round(get_mem() - post_model_mem, 2) |
|
model_mem_used = round(post_model_mem - initial_mem, 2) |
|
|
|
output_data = {"submission_info": SUBMISSION_INFO, |
|
"predictions": predictions, "total_time": total_time, "time_per_item": total_time / len(val_dataset), |
|
"memory_used_mb": final_mem, "model_memory_mb": model_mem_used, "gpu_name": gpu_name, } |
|
|
|
|
|
with open("predictions_1.json", "w") as f: |
|
json.dump(output_data, f, indent=4) |
|
print(f"Time: {total_time}s | Mem: {final_mem}MB | Model Load Mem: {model_mem_used}MB | GPU: {gpu_name}") |
|
print("β
Scripts Looks Good! Generation process completed successfully. Results saved to 'predictions_1.json'.") |
|
print("Next Step:\n 1) Upload this submission_task1.py script file to HuggingFace model repository.") |
|
print('''\n 2) Make a submission to the competition:\n Run:: medvqa validate_and_submit --competition=gi-2025 --task=1 --repo_id=...''') |
|
|