Spaces:
Sleeping
Sleeping
import torch | |
from torch import nn | |
from efficientnet_pytorch import EfficientNet | |
from pytorch_grad_cam import GradCAMElementWise | |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget | |
class Detector(nn.Module): | |
def __init__(self): | |
super(Detector, self).__init__() | |
self.net = EfficientNet.from_pretrained("efficientnet-b4", advprop=True, num_classes=2) | |
def forward(self, x): | |
x = self.net(x) | |
return x | |
def create_model(path="Weights/94_0.9485_val.tar", device=torch.device('cpu')): | |
model = Detector() | |
try: | |
if device.type == 'cuda': | |
model = model.half() | |
except: | |
model = model.float() | |
model = model.to(device) | |
if device == torch.device('cpu'): | |
cnn_sd = torch.load(path, map_location=torch.device('cpu'))["model"] | |
else: | |
cnn_sd = torch.load(path)["model"] | |
model.load_state_dict(cnn_sd) | |
model.eval() | |
return model | |
def create_cam(model): | |
target_layers = [model.net._blocks[-1]] | |
targets = [ClassifierOutputTarget(1)] | |
cam_algorithm = GradCAMElementWise | |
use_cuda = torch.cuda.is_available() and next(model.parameters()).is_cuda | |
cam = cam_algorithm(model=model, target_layers=target_layers, use_cuda=use_cuda) | |
return cam |