File size: 5,796 Bytes
cf7b164
 
 
 
c29ce38
cf7b164
 
 
 
 
 
 
 
 
 
 
c29ce38
cf7b164
c29ce38
 
cf7b164
c29ce38
 
 
 
 
cf7b164
c29ce38
cf7b164
 
c29ce38
 
 
 
 
 
cf7b164
 
 
 
c29ce38
cf7b164
 
c29ce38
cf7b164
 
c29ce38
cf7b164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c29ce38
cf7b164
 
c29ce38
cf7b164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c29ce38
 
cf7b164
 
c29ce38
cf7b164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c29ce38
cf7b164
 
 
 
 
 
 
 
 
 
c29ce38
cf7b164
 
 
 
c29ce38
cf7b164
c29ce38
 
 
 
 
 
cf7b164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import streamlit as st
import openai
import os
from pydub import AudioSegment
from pydub.silence import split_on_silence
from dotenv import load_dotenv
from tempfile import NamedTemporaryFile
import math
from docx import Document

# Load environment variables from .env file
load_dotenv()

# Set your OpenAI API key
openai.api_key = os.getenv("OPENAI_API_KEY")

def split_audio_on_silence(audio_file_path, min_silence_len=500, silence_thresh=-40, keep_silence=250):
    """
    Split an audio file into chunks using silence detection.
    
    Args:
        audio_file_path (str): Path to the audio file.
        min_silence_len (int): Minimum length of silence (in ms) required to be used as a split point.
        silence_thresh (int): The volume (in dBFS) below which is considered silence.
        keep_silence (int): Amount of silence (in ms) to retain at the beginning and end of each chunk.
    
    Returns:
        list: List of AudioSegment chunks.
    """
    audio = AudioSegment.from_file(audio_file_path)
    chunks = split_on_silence(
        audio, 
        min_silence_len=min_silence_len,
        silence_thresh=silence_thresh,
        keep_silence=keep_silence
    )
    return chunks

def transcribe(audio_file):
    """
    Transcribe an audio file using the OpenAI Whisper model.

    Args:
        audio_file (str): Path to the audio file.

    Returns:
        str: Transcribed text.
    """
    with open(audio_file, "rb") as audio:
        response = openai.audio.transcriptions.create(
            model="whisper-1",
            file=audio,
            response_format="text",
            language="en"  # Ensures transcription is in English
        )
    return response

def process_audio_chunks(audio_chunks):
    """
    Process and transcribe each audio chunk.

    Args:
        audio_chunks (list): List of AudioSegment chunks.

    Returns:
        str: Combined transcription from all chunks.
    """
    transcriptions = []
    min_length_ms = 100  # Minimum length required by OpenAI API (0.1 seconds)
    
    for i, chunk in enumerate(audio_chunks):
        if len(chunk) < min_length_ms:
            st.warning(f"Chunk {i} is too short to be processed.")
            continue
        
        with NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
            chunk.export(temp_audio_file.name, format="wav")
            temp_audio_file_path = temp_audio_file.name

        transcription = transcribe(temp_audio_file_path)
        if transcription:
            transcriptions.append(transcription)
            st.write(f"Transcription for chunk {i}: {transcription}")

        os.remove(temp_audio_file_path)
    return " ".join(transcriptions)

def save_transcription_to_docx(transcription, audio_file_path):
    """
    Save the transcription as a .docx file.

    Args:
        transcription (str): Transcribed text.
        audio_file_path (str): Path to the original audio file for naming purposes.

    Returns:
        str: Path to the saved .docx file.
    """
    # Extract the base name of the audio file (without extension)
    base_name = os.path.splitext(os.path.basename(audio_file_path))[0]
    
    # Create a new file name by appending "_full_transcription" with .docx extension
    output_file_name = f"{base_name}_full_transcription.docx"
    
    # Create a new Document object
    doc = Document()
    
    # Add the transcription text to the document
    doc.add_paragraph(transcription)
    
    # Save the document in .docx format
    doc.save(output_file_name)
    
    return output_file_name

st.title("Audio Transcription with OpenAI's Whisper")

# Allow uploading of audio or video files
uploaded_file = st.file_uploader("Upload an audio or video file", type=["wav", "mp3", "ogg", "m4a", "mp4", "mov"])

if 'transcription' not in st.session_state:
    st.session_state.transcription = None

if uploaded_file is not None and st.session_state.transcription is None:
    st.audio(uploaded_file)
    
    # Save uploaded file temporarily
    file_extension = uploaded_file.name.split(".")[-1]
    original_file_name = uploaded_file.name.rsplit('.', 1)[0]  # Get original file name without extension
    temp_audio_file = f"temp_audio_file.{file_extension}"
    with open(temp_audio_file, "wb") as f:
        f.write(uploaded_file.getbuffer())

    # Split and process audio using silence detection
    with st.spinner('Transcribing...'):
        audio_chunks = split_audio_on_silence(
            temp_audio_file, 
            min_silence_len=500,  # adjust based on your audio characteristics
            silence_thresh=-40,   # adjust based on the ambient noise level
            keep_silence=250      # optional: keeps a bit of silence at the edges
        )
        transcription = process_audio_chunks(audio_chunks)
        if transcription:
            st.session_state.transcription = transcription
            st.success('Transcription complete!')

            # Save transcription to a Word (.docx) file
            output_docx_file = save_transcription_to_docx(transcription, uploaded_file.name)
            st.session_state.output_docx_file = output_docx_file
            
    # Clean up temporary file
    if os.path.exists(temp_audio_file):
        os.remove(temp_audio_file)

if st.session_state.transcription:
    st.text_area("Transcription", st.session_state.transcription, key="transcription_area_final")
    
    # Download the transcription as a .docx file
    with open(st.session_state.output_docx_file, "rb") as docx_file:
        st.download_button(
            label="Download Transcription (.docx)",
            data=docx_file,
            file_name=st.session_state.output_docx_file,
            mime='application/vnd.openxmlformats-officedocument.wordprocessingml.document'
        )