Spaces:
Sleeping
Sleeping
File size: 5,796 Bytes
cf7b164 c29ce38 cf7b164 c29ce38 cf7b164 c29ce38 cf7b164 c29ce38 cf7b164 c29ce38 cf7b164 c29ce38 cf7b164 c29ce38 cf7b164 c29ce38 cf7b164 c29ce38 cf7b164 c29ce38 cf7b164 c29ce38 cf7b164 c29ce38 cf7b164 c29ce38 cf7b164 c29ce38 cf7b164 c29ce38 cf7b164 c29ce38 cf7b164 c29ce38 cf7b164 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import streamlit as st
import openai
import os
from pydub import AudioSegment
from pydub.silence import split_on_silence
from dotenv import load_dotenv
from tempfile import NamedTemporaryFile
import math
from docx import Document
# Load environment variables from .env file
load_dotenv()
# Set your OpenAI API key
openai.api_key = os.getenv("OPENAI_API_KEY")
def split_audio_on_silence(audio_file_path, min_silence_len=500, silence_thresh=-40, keep_silence=250):
"""
Split an audio file into chunks using silence detection.
Args:
audio_file_path (str): Path to the audio file.
min_silence_len (int): Minimum length of silence (in ms) required to be used as a split point.
silence_thresh (int): The volume (in dBFS) below which is considered silence.
keep_silence (int): Amount of silence (in ms) to retain at the beginning and end of each chunk.
Returns:
list: List of AudioSegment chunks.
"""
audio = AudioSegment.from_file(audio_file_path)
chunks = split_on_silence(
audio,
min_silence_len=min_silence_len,
silence_thresh=silence_thresh,
keep_silence=keep_silence
)
return chunks
def transcribe(audio_file):
"""
Transcribe an audio file using the OpenAI Whisper model.
Args:
audio_file (str): Path to the audio file.
Returns:
str: Transcribed text.
"""
with open(audio_file, "rb") as audio:
response = openai.audio.transcriptions.create(
model="whisper-1",
file=audio,
response_format="text",
language="en" # Ensures transcription is in English
)
return response
def process_audio_chunks(audio_chunks):
"""
Process and transcribe each audio chunk.
Args:
audio_chunks (list): List of AudioSegment chunks.
Returns:
str: Combined transcription from all chunks.
"""
transcriptions = []
min_length_ms = 100 # Minimum length required by OpenAI API (0.1 seconds)
for i, chunk in enumerate(audio_chunks):
if len(chunk) < min_length_ms:
st.warning(f"Chunk {i} is too short to be processed.")
continue
with NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
chunk.export(temp_audio_file.name, format="wav")
temp_audio_file_path = temp_audio_file.name
transcription = transcribe(temp_audio_file_path)
if transcription:
transcriptions.append(transcription)
st.write(f"Transcription for chunk {i}: {transcription}")
os.remove(temp_audio_file_path)
return " ".join(transcriptions)
def save_transcription_to_docx(transcription, audio_file_path):
"""
Save the transcription as a .docx file.
Args:
transcription (str): Transcribed text.
audio_file_path (str): Path to the original audio file for naming purposes.
Returns:
str: Path to the saved .docx file.
"""
# Extract the base name of the audio file (without extension)
base_name = os.path.splitext(os.path.basename(audio_file_path))[0]
# Create a new file name by appending "_full_transcription" with .docx extension
output_file_name = f"{base_name}_full_transcription.docx"
# Create a new Document object
doc = Document()
# Add the transcription text to the document
doc.add_paragraph(transcription)
# Save the document in .docx format
doc.save(output_file_name)
return output_file_name
st.title("Audio Transcription with OpenAI's Whisper")
# Allow uploading of audio or video files
uploaded_file = st.file_uploader("Upload an audio or video file", type=["wav", "mp3", "ogg", "m4a", "mp4", "mov"])
if 'transcription' not in st.session_state:
st.session_state.transcription = None
if uploaded_file is not None and st.session_state.transcription is None:
st.audio(uploaded_file)
# Save uploaded file temporarily
file_extension = uploaded_file.name.split(".")[-1]
original_file_name = uploaded_file.name.rsplit('.', 1)[0] # Get original file name without extension
temp_audio_file = f"temp_audio_file.{file_extension}"
with open(temp_audio_file, "wb") as f:
f.write(uploaded_file.getbuffer())
# Split and process audio using silence detection
with st.spinner('Transcribing...'):
audio_chunks = split_audio_on_silence(
temp_audio_file,
min_silence_len=500, # adjust based on your audio characteristics
silence_thresh=-40, # adjust based on the ambient noise level
keep_silence=250 # optional: keeps a bit of silence at the edges
)
transcription = process_audio_chunks(audio_chunks)
if transcription:
st.session_state.transcription = transcription
st.success('Transcription complete!')
# Save transcription to a Word (.docx) file
output_docx_file = save_transcription_to_docx(transcription, uploaded_file.name)
st.session_state.output_docx_file = output_docx_file
# Clean up temporary file
if os.path.exists(temp_audio_file):
os.remove(temp_audio_file)
if st.session_state.transcription:
st.text_area("Transcription", st.session_state.transcription, key="transcription_area_final")
# Download the transcription as a .docx file
with open(st.session_state.output_docx_file, "rb") as docx_file:
st.download_button(
label="Download Transcription (.docx)",
data=docx_file,
file_name=st.session_state.output_docx_file,
mime='application/vnd.openxmlformats-officedocument.wordprocessingml.document'
)
|