Spaces:
Sleeping
Sleeping
File size: 13,777 Bytes
f8ab25d 638eb56 f8ab25d 638eb56 f8ab25d 136ada0 638eb56 136ada0 8776749 136ada0 4cdf9bf 136ada0 4cdf9bf 136ada0 4cdf9bf 136ada0 8776749 136ada0 4cdf9bf 136ada0 4cdf9bf 136ada0 4cdf9bf 136ada0 638eb56 136ada0 638eb56 f8ab25d 136ada0 4cdf9bf 638eb56 f8ab25d 638eb56 8776749 4cdf9bf 136ada0 f8ab25d 136ada0 f8ab25d 136ada0 638eb56 136ada0 638eb56 136ada0 4cdf9bf 136ada0 638eb56 136ada0 638eb56 4cdf9bf 136ada0 638eb56 9e3c2c5 638eb56 9e3c2c5 4cdf9bf 9e3c2c5 136ada0 638eb56 136ada0 638eb56 136ada0 638eb56 136ada0 638eb56 9e3c2c5 638eb56 9e3c2c5 4cdf9bf 136ada0 9e3c2c5 638eb56 136ada0 9e3c2c5 136ada0 4cdf9bf 136ada0 4cdf9bf 8776749 4cdf9bf 8776749 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.dates as mdates
import plotly.express as px
import plotly.graph_objects as go
import re
from datetime import datetime, timedelta
import warnings
import time
import dask.dataframe as dd
state_to_region = {
# WEST
'AK': 'WEST', 'CA': 'WEST', 'CO': 'WEST', 'HI': 'WEST', 'ID': 'WEST',
'MT': 'WEST', 'NV': 'WEST', 'OR': 'WEST', 'UT': 'WEST', 'WA': 'WEST', 'WY': 'WEST',
# SOUTHWEST
'AZ': 'SOUTHWEST', 'NM': 'SOUTHWEST', 'OK': 'SOUTHWEST', 'TX': 'SOUTHWEST',
# MIDWEST
'IL': 'MIDWEST', 'IN': 'MIDWEST', 'IA': 'MIDWEST', 'KS': 'MIDWEST', 'MI': 'MIDWEST',
'MN': 'MIDWEST', 'MO': 'MIDWEST', 'NE': 'MIDWEST', 'ND': 'MIDWEST', 'OH': 'MIDWEST',
'SD': 'MIDWEST', 'WI': 'MIDWEST',
# SOUTHEAST
'AL': 'SOUTHEAST', 'AR': 'SOUTHEAST', 'DE': 'SOUTHEAST', 'FL': 'SOUTHEAST',
'GA': 'SOUTHEAST', 'KY': 'SOUTHEAST', 'LA': 'SOUTHEAST', 'MD': 'SOUTHEAST',
'MS': 'SOUTHEAST', 'NC': 'SOUTHEAST', 'SC': 'SOUTHEAST', 'TN': 'SOUTHEAST',
'VA': 'SOUTHEAST', 'WV': 'SOUTHEAST',
# NORTHEAST
'CT': 'NORTHEAST', 'ME': 'NORTHEAST', 'MA': 'NORTHEAST', 'NH': 'NORTHEAST',
'NJ': 'NORTHEAST', 'NY': 'NORTHEAST', 'PA': 'NORTHEAST', 'RI': 'NORTHEAST',
'VT': 'NORTHEAST'
}
@st.cache_data
def date_from_week(year, week):
# Assuming the fiscal year starts in August and the week starts from August 1st
base_date = pd.to_datetime((year - 1).astype(str) + '-08-01')
dates = base_date + pd.to_timedelta((week - 1) * 7, unit='days')
return dates
@st.cache_data
def load_data(active_card):
# st.write(f"{active_card}")
# Define columns common to multiple cards if there are any
common_cols = ['FyWeek', 'Itemtype', 'Chaincode', 'State', 'SalesVolume', 'UnitPrice', 'Sales']
# Columns specific to cards
card_specific_cols = {
'card1': ['FyWeek', 'State', 'Itemtype', 'Chaincode', 'SalesVolume'],
'card2': ['FyWeek', 'Fy', 'State','Store','Address','Zipcode','City','Itemtype', 'Chaincode', 'Containercode', 'SalesVolume', 'UnitPrice', 'Sales'],
'card3': ['FyWeek', 'Fy', 'State','Store','Address','Zipcode','City','Itemtype', 'Chaincode', 'Containercode', 'SalesVolume', 'UnitPrice', 'Sales'] # Added for PE calculation card
}
# Choose columns based on the active card
required_columns = card_specific_cols.get(active_card, common_cols)
# Define the data types for efficient memory usage
dtype_spec = {
'FyWeek': 'string',
'Fy': 'category', # Add data type for 'Fy' if it's used
'Itemtype': 'category',
'Chaincode': 'category',
'State': 'category',
"Store": "category",
'Containercode': 'category',
"Address": "string",
"Zipcode": "float",
"City": "category",
'SalesVolume': 'float',
'UnitPrice': 'float',
'Sales': 'float'
}
# Read only the necessary columns
# st.write(required_columns)
ddf = dd.read_csv("fy21-24.csv", usecols=required_columns, dtype=dtype_spec)
df = ddf.compute()
# st.write("+++++++++++++++++++++++")
if active_card in ['card2', 'card3', 'card4']:
df = df.groupby(['FyWeek', 'Fy', 'Chaincode', 'Store', 'Address', 'Zipcode', 'City', 'State', 'Containercode', 'Itemtype'], observed=True).agg({
'SalesVolume': 'sum',
'UnitPrice': 'mean',
'Sales': 'sum'
}).reset_index()
df[['FY', 'Week']] = df['FyWeek'].str.split(' Week ', expand=True)
df['Week'] = df['Week'].astype(int) # Convert 'Week' to int
df['Year'] = df['FY'].str[2:].astype(int) # Extract year part and convert to int
df['Dt'] = date_from_week(df['Year'], df['Week'])
# Add the region column based on state
df['Region'] = df['State'].map(state_to_region)
return df
# st.image("bonnie.png", width=200)
# # Main interactive section
# st.title('Bonnnie Plants Price vs Sales Volume Trcaker')
# Display logo
st.image("bonnie.png", width=150) # Adjust width as needed
# Display title
st.title("Bonnie Plants Pricing & Sales Analytics Dashboard")
# Close the div for logo and title
# st.markdown('</div>', unsafe_allow_html=True)
# Initialize session state for storing which card was clicked and item type
if 'active_card' not in st.session_state:
st.session_state['active_card'] = None
if 'selected_item_type' not in st.session_state:
st.session_state['selected_item_type'] = 'CORE' # Set default to 'CORE'
if 'selected_feature' not in st.session_state:
st.session_state['selected_feature'] = 'Chaincode' # Default to 'Chain Code'
# Card selection buttons
col1, col2, col3= st.columns(3)
# Define buttons for plot categories, update session state when clicked
with col1:
if st.button("Sales Volume Trend for Item Category"):
st.session_state['active_card'] = 'card1'
with col2:
if st.button("Sales Volume & Unit Price Correlation for Item Category and Container Code"):
st.session_state['active_card'] = 'card2'
with col3:
if st.button("PE Coefficient Calculation for Regions & Item Categories"):
st.session_state['active_card'] = 'card3'
start_time=time.time()
# st.write(st.session_state['active_card'])
df = load_data(st.session_state['active_card'])
time_taken = time.time() - start_time
st.write(f"Data loaded in {time_taken:.2f} seconds")
# Initialize session state for storing the selected state and feature
if 'selected_state' not in st.session_state:
st.session_state['selected_state'] = df['State'].unique()[0] # Default to the first state
############################################ CARD #1 ####################################################
if st.session_state['active_card'] == 'card1':
# st.write("Processing card1...")
# Dropdown for selecting the state
selected_state = st.selectbox('Select State', df['State'].unique())
# Dropdown for selecting the feature for grouping
selected_feature = st.selectbox('Select Feature for Grouping', ['Chaincode', 'Itemtype',])
# Filter the dataframe based on selected state
filtered_df = df[df['State'] == selected_state]
# Time the grouping operation
start_time = time.time()
group_data = filtered_df.groupby(['FyWeek', selected_feature],observed=True)['SalesVolume'].sum().reset_index()
time_taken = time.time() - start_time
# st.write(f"Data grouped in {time_taken:.2f} seconds")
# Plotting
fig = px.bar(group_data, x='FyWeek', y='SalesVolume', color=selected_feature,
title=f'Sales Volume over Fiscal Week in {selected_state} by {selected_feature}',
labels={'SalesVolume': 'Sales Volume', 'Fiscal Week Short': 'Fiscal Week'})
st.plotly_chart(fig)
##########################################################################################################
##########################################################################################################
if st.session_state['active_card'] == 'card2':
# Dropdown to select item type (using session_state)
st.session_state['selected_item_type'] = st.selectbox(
'Select Item Type', df['Itemtype'].unique(),
index=list(df['Itemtype'].unique()).index(st.session_state['selected_item_type']))
# Dropdown to select the grouping category (container code, chain code, or state)
group_by_option = st.selectbox('Group by', ['Containercode', 'Chaincode', 'State','Region'])
# Multi-select checkbox to select multiple years
selected_years = st.multiselect('Select Year(s)', [2021, 2022, 2023, 2024], default=[2021])
st.subheader(f"Sales Volume & Unit Price Correlation for {group_by_option} in {', '.join(map(str, selected_years))}")
# Convert 'Dt' column to datetime
df['Dt'] = pd.to_datetime(df['Dt'], errors='coerce')
df['Promo'] = np.where(df['Dt'].dt.month.astype(str).isin(['3', '4', '5', '6']), 'Promo', 'NoPromo')
df["Promo"] = df["Promo"].astype("category")
# Filter the dataframe based on the selected item type and selected years
filtered_df = df[(df['Itemtype'] == st.session_state['selected_item_type']) & (df['Dt'].dt.year.isin(selected_years))]
# Find the top 3 values based on total SalesVolume in the selected grouping category
top_3_values = filtered_df.groupby(group_by_option, observed=True)['SalesVolume'].sum().nlargest(3).index
# Filter the data for only the top 3 values
top_group_data = filtered_df[filtered_df[group_by_option].isin(top_3_values)]
# Aggregate data
agg_df = top_group_data.groupby([group_by_option, 'Year', 'Week', 'Dt'], observed=True).agg({
'SalesVolume': 'sum',
'UnitPrice': 'mean'
}).reset_index()
# Create a new column 'week-year' for X-axis labels
agg_df['week-year'] = agg_df['Dt'].dt.strftime('%U-%Y')
# Loop through the top 3 values and create separate plots using Plotly
for value in top_3_values:
value_data = agg_df[agg_df[group_by_option] == value]
# Assuming you have 'value_data' from your previous code
mean_sales_volume = value_data['SalesVolume'].mean()
mean_unit_price = value_data['UnitPrice'].mean()
# Create a Plotly figure
fig = go.Figure()
# Add SalesVolume trace
fig.add_trace(go.Scatter(
x=value_data['week-year'],
y=value_data['SalesVolume'],
mode='lines+markers',
name='SalesVolume',
line=dict(color='blue'),
hovertemplate='SalesVolume: %{y}<br>Week-Year: %{x}'
))
# Add UnitPrice trace on a secondary Y-axis
fig.add_trace(go.Scatter(
x=value_data['week-year'],
y=value_data['UnitPrice'],
mode='lines+markers',
name='UnitPrice',
line=dict(color='green'),
yaxis='y2',
hovertemplate='UnitPrice: %{y}<br>Week-Year: %{x}'
))
# Add mean line for SalesVolume
fig.add_shape(type="line",
x0=value_data['week-year'].min(), x1=value_data['week-year'].max(),
y0=mean_sales_volume, y1=mean_sales_volume,
line=dict(color="blue", width=2, dash="dash"),
xref='x', yref='y')
# Add mean line for UnitPrice (on secondary Y-axis)
fig.add_shape(type="line",
x0=value_data['week-year'].min(), x1=value_data['week-year'].max(),
y0=mean_unit_price, y1=mean_unit_price,
line=dict(color="green", width=2, dash="dash"),
xref='x', yref='y2')
# Update layout for dual axes
fig.update_layout(
template='plotly_white',
title=f"SalesVolume and UnitPrice - {value} ({group_by_option})",
xaxis_title='Week-Year',
yaxis_title='Sales Volume',
yaxis2=dict(title='UnitPrice', overlaying='y', side='right'),
legend=dict(x=0.9, y=1.15),
hovermode="x unified", # Show both values in a tooltip
height=600,
margin=dict(l=50, r=50, t=50, b=50)
)
# Rotate X-axis labels
fig.update_xaxes(tickangle=90)
# Display the Plotly figure in Streamlit
st.plotly_chart(fig, use_container_width=True)
################################
if st.session_state['active_card'] == 'card3':
# Dropdown for selecting the item type
item_type_options = df['Itemtype'].unique()
selected_item_type = st.selectbox("Select Item Type", item_type_options)
# Dropdown for selecting the region (multiple selection allowed)
region_options = df['Region'].unique()
selected_regions = st.multiselect("Select Region(s)", region_options, default=region_options)
# Filter data based on selected item type and selected regions
filtered_df = df[(df['Itemtype'] == selected_item_type) & (df['Region'].isin(selected_regions))]
# Group by Year, Region, Itemtype and Promo, and aggregate SalesVolume and UnitPrice
agg_df = filtered_df.groupby(['Fy', 'Region', 'Itemtype',]).agg({
'SalesVolume': 'sum',
'UnitPrice': 'mean'
}).reset_index()
# Sort values by Region, Itemtype, Fy, and Promo for YOY calculation
agg_df = agg_df.sort_values(by=['Region', 'Itemtype', 'Fy',])
# Calculate YOY percentage changes in Sales Volume and Unit Price
agg_df['SalesVolume_pct_change'] = agg_df.groupby(['Region', 'Itemtype',])['SalesVolume'].pct_change().round(3) * 100
agg_df['UnitPrice_pct_change'] = agg_df.groupby(['Region', 'Itemtype', ])['UnitPrice'].pct_change().round(3) * 100
# Calculate Price Elasticity Coefficient (PE)
agg_df['PE_Coeff'] = (agg_df['SalesVolume_pct_change'] / agg_df['UnitPrice_pct_change']).round(2)
# Exclude FY 2025 but keep FY 2021 even with NaN values
agg_df_filtered = agg_df[agg_df['Fy'] != 'FY 2025']
# Drop rows where PE_Coeff is NaN (optional)
agg_df_filtered = agg_df_filtered.dropna(subset=['PE_Coeff'])
st.dataframe(agg_df_filtered)
st.write(agg_df_filtered.shape)
# Plot the PE Coefficient with Plotly
fig = px.line(
agg_df_filtered,
x='Fy',
y='PE_Coeff', # Differentiate between Promo and NoPromo
line_dash='Region', # Differentiate lines by Region
title=f"Price Elasticity Coefficient (PE) by Year for {selected_item_type}",
labels={'Fy': 'Fiscal Year', 'PE_Coeff': 'Price Elasticity Coefficient'},
markers=True
)
# Customize layout and show plot
fig.update_layout(
height=600,
width=1000,
)
st.plotly_chart(fig, use_container_width=True)
|