Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 5,162 Bytes
f0c408b 725f958 b577d3a f0c408b b577d3a f0c408b 725f958 f0c408b 725f958 b577d3a f0c408b b577d3a f0c408b b577d3a 725f958 b577d3a f0c408b b577d3a 725f958 b577d3a f0c408b 725f958 b577d3a de55408 f0c408b 725f958 b577d3a f0c408b b577d3a f0c408b b577d3a f0c408b b577d3a 725f958 b577d3a 725f958 f0c408b 725f958 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
from typing import Tuple
import gradio as gr
import numpy as np
import supervision as sv
import torch
from PIL import Image
from transformers import SamModel, SamProcessor
from utils.efficient_sam import load, inference_with_box
MARKDOWN = """
# EfficientSAM sv. SAM
This is a demo for comparing the performance of
[EfficientSAM](https://arxiv.org/abs/2312.00863) and
[SAM](https://arxiv.org/abs/2304.02643).
"""
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
SAM_MODEL = SamModel.from_pretrained("facebook/sam-vit-huge").to(DEVICE)
SAM_PROCESSOR = SamProcessor.from_pretrained("facebook/sam-vit-huge")
EFFICIENT_SAM_MODEL = load(device=DEVICE)
MASK_ANNOTATOR = sv.MaskAnnotator(
color=sv.Color.red(),
color_lookup=sv.ColorLookup.INDEX)
BOX_ANNOTATOR = sv.BoundingBoxAnnotator(
color=sv.Color.red(),
color_lookup=sv.ColorLookup.INDEX)
def annotate_image(image: np.ndarray, detections: sv.Detections) -> np.ndarray:
bgr_image = image[:, :, ::-1]
annotated_bgr_image = MASK_ANNOTATOR.annotate(
scene=bgr_image, detections=detections)
annotated_bgr_image = BOX_ANNOTATOR.annotate(
scene=annotated_bgr_image, detections=detections)
return annotated_bgr_image[:, :, ::-1]
def efficient_sam_inference(
image: np.ndarray,
x_min: int,
y_min: int,
x_max: int,
y_max: int
) -> np.ndarray:
box = np.array([[x_min, y_min], [x_max, y_max]])
mask = inference_with_box(image, box, EFFICIENT_SAM_MODEL, DEVICE)
mask = mask[np.newaxis, ...]
detections = sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)
return annotate_image(image=image, detections=detections)
def sam_inference(
image: np.ndarray,
x_min: int,
y_min: int,
x_max: int,
y_max: int
) -> np.ndarray:
input_boxes = [[[x_min, y_min, x_max, y_max]]]
inputs = SAM_PROCESSOR(
Image.fromarray(image),
input_boxes=[input_boxes],
return_tensors="pt"
).to(DEVICE)
with torch.no_grad():
outputs = SAM_MODEL(**inputs)
mask = SAM_PROCESSOR.image_processor.post_process_masks(
outputs.pred_masks.cpu(),
inputs["original_sizes"].cpu(),
inputs["reshaped_input_sizes"].cpu()
)[0][0][0].numpy()
mask = mask[np.newaxis, ...]
detections = sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)
return annotate_image(image=image, detections=detections)
def inference(
image: np.ndarray,
x_min: int,
y_min: int,
x_max: int,
y_max: int
) -> Tuple[np.ndarray, np.ndarray]:
return (
efficient_sam_inference(image, x_min, y_min, x_max, y_max),
sam_inference(image, x_min, y_min, x_max, y_max)
)
def clear(_: np.ndarray) -> Tuple[None, None]:
return None, None
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Tab(label="Box prompt"):
with gr.Row():
with gr.Column():
input_image = gr.Image()
with gr.Accordion(label="Box", open=False):
with gr.Row():
x_min_number = gr.Number(label="x_min")
y_min_number = gr.Number(label="y_min")
x_max_number = gr.Number(label="x_max")
y_max_number = gr.Number(label="y_max")
efficient_sam_output_image = gr.Image(label="EfficientSAM")
sam_output_image = gr.Image(label="SAM")
with gr.Row():
submit_button = gr.Button("Submit")
gr.Examples(
fn=inference,
examples=[
[
'https://media.roboflow.com/efficient-sam/beagle.jpeg',
69,
26,
625,
704
],
[
'https://media.roboflow.com/efficient-sam/corgi.jpg',
801,
510,
1782,
993
],
[
'https://media.roboflow.com/efficient-sam/horses.jpg',
814,
696,
1523,
1183
],
[
'https://media.roboflow.com/efficient-sam/bears.jpg',
653,
874,
1173,
1229
]
],
inputs=[input_image, x_min_number, y_min_number, x_max_number, y_max_number],
outputs=[efficient_sam_output_image, sam_output_image],
)
submit_button.click(
efficient_sam_inference,
inputs=[input_image, x_min_number, y_min_number, x_max_number, y_max_number],
outputs=efficient_sam_output_image
)
submit_button.click(
sam_inference,
inputs=[input_image, x_min_number, y_min_number, x_max_number, y_max_number],
outputs=sam_output_image
)
input_image.change(
clear,
inputs=input_image,
outputs=[efficient_sam_output_image, sam_output_image]
)
demo.launch(debug=False, show_error=True)
|