Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
from typing import Tuple | |
import gradio as gr | |
import numpy as np | |
import supervision as sv | |
import torch | |
from PIL import Image | |
from transformers import SamModel, SamProcessor | |
from utils.efficient_sam import load, inference_with_box | |
MARKDOWN = """ | |
# EfficientSAM sv. SAM | |
This is a demo for comparing the performance of | |
[EfficientSAM](https://arxiv.org/abs/2312.00863) and | |
[SAM](https://arxiv.org/abs/2304.02643). | |
""" | |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
SAM_MODEL = SamModel.from_pretrained("facebook/sam-vit-huge").to(DEVICE) | |
SAM_PROCESSOR = SamProcessor.from_pretrained("facebook/sam-vit-huge") | |
EFFICIENT_SAM_MODEL = load(device=DEVICE) | |
MASK_ANNOTATOR = sv.MaskAnnotator( | |
color=sv.Color.red(), | |
color_lookup=sv.ColorLookup.INDEX) | |
BOX_ANNOTATOR = sv.BoundingBoxAnnotator( | |
color=sv.Color.red(), | |
color_lookup=sv.ColorLookup.INDEX) | |
def annotate_image(image: np.ndarray, detections: sv.Detections) -> np.ndarray: | |
bgr_image = image[:, :, ::-1] | |
annotated_bgr_image = MASK_ANNOTATOR.annotate( | |
scene=bgr_image, detections=detections) | |
annotated_bgr_image = BOX_ANNOTATOR.annotate( | |
scene=annotated_bgr_image, detections=detections) | |
return annotated_bgr_image[:, :, ::-1] | |
def efficient_sam_inference( | |
image: np.ndarray, | |
x_min: int, | |
y_min: int, | |
x_max: int, | |
y_max: int | |
) -> np.ndarray: | |
box = np.array([[x_min, y_min], [x_max, y_max]]) | |
mask = inference_with_box(image, box, EFFICIENT_SAM_MODEL, DEVICE) | |
mask = mask[np.newaxis, ...] | |
detections = sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask) | |
return annotate_image(image=image, detections=detections) | |
def sam_inference( | |
image: np.ndarray, | |
x_min: int, | |
y_min: int, | |
x_max: int, | |
y_max: int | |
) -> np.ndarray: | |
input_boxes = [[[x_min, y_min, x_max, y_max]]] | |
inputs = SAM_PROCESSOR( | |
Image.fromarray(image), | |
input_boxes=[input_boxes], | |
return_tensors="pt" | |
).to(DEVICE) | |
with torch.no_grad(): | |
outputs = SAM_MODEL(**inputs) | |
mask = SAM_PROCESSOR.image_processor.post_process_masks( | |
outputs.pred_masks.cpu(), | |
inputs["original_sizes"].cpu(), | |
inputs["reshaped_input_sizes"].cpu() | |
)[0][0][0].numpy() | |
mask = mask[np.newaxis, ...] | |
detections = sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask) | |
return annotate_image(image=image, detections=detections) | |
def inference( | |
image: np.ndarray, | |
x_min: int, | |
y_min: int, | |
x_max: int, | |
y_max: int | |
) -> Tuple[np.ndarray, np.ndarray]: | |
return ( | |
efficient_sam_inference(image, x_min, y_min, x_max, y_max), | |
sam_inference(image, x_min, y_min, x_max, y_max) | |
) | |
def clear(_: np.ndarray) -> Tuple[None, None]: | |
return None, None | |
with gr.Blocks() as demo: | |
gr.Markdown(MARKDOWN) | |
with gr.Tab(label="Box prompt"): | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image() | |
with gr.Accordion(label="Box", open=False): | |
with gr.Row(): | |
x_min_number = gr.Number(label="x_min") | |
y_min_number = gr.Number(label="y_min") | |
x_max_number = gr.Number(label="x_max") | |
y_max_number = gr.Number(label="y_max") | |
efficient_sam_output_image = gr.Image(label="EfficientSAM") | |
sam_output_image = gr.Image(label="SAM") | |
with gr.Row(): | |
submit_button = gr.Button("Submit") | |
gr.Examples( | |
fn=inference, | |
examples=[ | |
[ | |
'https://media.roboflow.com/efficient-sam/beagle.jpeg', | |
69, | |
26, | |
625, | |
704 | |
], | |
[ | |
'https://media.roboflow.com/efficient-sam/corgi.jpg', | |
801, | |
510, | |
1782, | |
993 | |
], | |
[ | |
'https://media.roboflow.com/efficient-sam/horses.jpg', | |
814, | |
696, | |
1523, | |
1183 | |
], | |
[ | |
'https://media.roboflow.com/efficient-sam/bears.jpg', | |
653, | |
874, | |
1173, | |
1229 | |
] | |
], | |
inputs=[input_image, x_min_number, y_min_number, x_max_number, y_max_number], | |
outputs=[efficient_sam_output_image, sam_output_image], | |
) | |
submit_button.click( | |
efficient_sam_inference, | |
inputs=[input_image, x_min_number, y_min_number, x_max_number, y_max_number], | |
outputs=efficient_sam_output_image | |
) | |
submit_button.click( | |
sam_inference, | |
inputs=[input_image, x_min_number, y_min_number, x_max_number, y_max_number], | |
outputs=sam_output_image | |
) | |
input_image.change( | |
clear, | |
inputs=input_image, | |
outputs=[efficient_sam_output_image, sam_output_image] | |
) | |
demo.launch(debug=False, show_error=True) | |