Spaces:
Build error
Build error
import concurrent.futures | |
import gc | |
import json | |
import os | |
from datasets import Dataset, load_dataset | |
from huggingface_hub import HfApi | |
from huggingface_hub.utils import RepositoryNotFoundError | |
from openai import OpenAI | |
from tqdm.auto import tqdm | |
from vllm import LLM, SamplingParams | |
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] | |
DATASET_HUGGINGFACE_WORKSPACE = os.environ["DATASET_HUGGINGFACE_WORKSPACE"] | |
MODEL_HUGGINGFACE_WORKSPACE = os.environ["MODEL_HUGGINGFACE_WORKSPACE"] | |
IS_DUMMY = os.environ.get("IS_DUMMY", False) | |
print("====== EVAL PARAMETERS ======") # noqa | |
print(f"{DATASET_HUGGINGFACE_WORKSPACE=}") # noqa | |
print(f"{MODEL_HUGGINGFACE_WORKSPACE=}") # noqa | |
print(f"{IS_DUMMY=}") # noqa | |
print("=============================") # noqa | |
def generate_answers(model_id: str, dataset_name: str): | |
def format(sample): | |
return "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{}\n\n### Response:\n".format( | |
sample["instruction"] | |
) | |
dataset = load_dataset(dataset_name, split="test") | |
if IS_DUMMY: | |
dataset = dataset.select(range(10)) | |
print(f"Dataset size: {len(dataset)}") # noqa | |
dataset = dataset.map(lambda sample: {"prompt": format(sample)}) | |
print(f"Generating answers for {model_id}") # noqa | |
llm = LLM(model=model_id, max_model_len=2048) | |
sampling_params = SamplingParams(temperature=0.8, top_p=0.95, min_p=0.05, max_tokens=2048) | |
outputs = llm.generate(dataset["prompt"], sampling_params) | |
answers = [output.outputs[0].text for output in outputs] | |
dataset = dataset.add_column("answers", answers) | |
print(f"Uploading results for {model_id}") # noqa | |
dataset.push_to_hub(f"{DATASET_HUGGINGFACE_WORKSPACE}/{model_id.split('/')[-1]}-results") | |
gc.collect() | |
return dataset | |
def evaluate_answer(instruction: str, answer: str, client: OpenAI) -> dict: | |
prompt = f"""You are an expert judge. Please evaluate the quality of a given answer to an instruction based on two criteria: | |
1. Accuracy: How factually correct is the information presented in the answer? You are a technical expert in this topic. | |
2. Style: Is the tone and writing style appropriate for a blog post or social media content? It should use simple but technical words and avoid formal or academic language. | |
Accuracy scale: | |
1 (Poor): Contains factual errors or misleading information | |
2 (Good): Mostly accurate with minor errors or omissions | |
3 (Excellent): Highly accurate and comprehensive | |
Style scale: | |
1 (Poor): Too formal, uses some overly complex words | |
2 (Good): Good balance of technical content and accessibility, but still uses formal words and expressions | |
3 (Excellent): Perfectly accessible language for blog/social media, uses simple but precise technical terms when necessary | |
Example of bad style: The Llama2 7B model constitutes a noteworthy progression in the field of artificial intelligence, serving as the successor to its predecessor, the original Llama architecture. | |
Example of excellent style: Llama2 7B outperforms the original Llama model across multiple benchmarks. | |
Instruction: {instruction} | |
Answer: {answer} | |
Provide your evaluation in JSON format with the following structure: | |
{{ | |
"accuracy": {{ | |
"analysis": "...", | |
"score": 0 | |
}}, | |
"style": {{ | |
"analysis": "...", | |
"score": 0 | |
}} | |
}} | |
""" | |
completion = client.chat.completions.create( | |
model="gpt-4o-mini", | |
messages=[ | |
{ | |
"role": "system", | |
"content": "You are a helpful assistant who evaluates answers based on accuracy and style. Provide your response in JSON format with a short analysis and score for each criterion.", | |
}, | |
{"role": "user", "content": prompt}, | |
], | |
response_format={"type": "json_object"}, | |
max_tokens=1000, | |
temperature=0.9, | |
) | |
# Parse the structured output | |
return json.loads(completion.choices[0].message.content) | |
def evaluate_batch(batch, start_index): | |
client = OpenAI(api_key=OPENAI_API_KEY) | |
return [(i, evaluate_answer(instr, ans, client)) for i, (instr, ans) in enumerate(batch, start=start_index)] | |
def evaluate_answers(model_id: str, num_threads: int = 10, batch_size: int = 5) -> Dataset: | |
# Load the dataset | |
dataset = load_dataset(f"{DATASET_HUGGINGFACE_WORKSPACE}/{model_id.split('/')[-1]}-results", split="all") | |
# Create batches of instruction-answer pairs with their original indices | |
batches = [ | |
(i, list(zip(dataset["instruction"][i : i + batch_size], dataset["answers"][i : i + batch_size], strict=False))) | |
for i in range(0, len(dataset), batch_size) | |
] | |
evaluations = [None] * len(dataset) | |
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor: | |
futures = [executor.submit(evaluate_batch, batch, start_index) for start_index, batch in batches] | |
for future in tqdm(concurrent.futures.as_completed(futures), total=len(futures)): | |
for index, evaluation in future.result(): | |
evaluations[index] = evaluation | |
# Replace the 'evaluation' column if it exists, otherwise add it | |
if "evaluation" in dataset.column_names: | |
dataset = dataset.remove_columns(["evaluation"]) | |
dataset = dataset.add_column("evaluation", evaluations) | |
# Post-process evaluations | |
accuracy_scores = [] | |
style_scores = [] | |
for evaluation in dataset["evaluation"]: | |
try: | |
eval_dict = json.loads(evaluation) if isinstance(evaluation, str) else evaluation | |
accuracy_score = eval_dict["accuracy"]["score"] | |
style_score = eval_dict["style"]["score"] | |
accuracy_scores.append(accuracy_score) | |
style_scores.append(style_score) | |
except (json.JSONDecodeError, KeyError, TypeError): | |
# If there's an error, append None to maintain alignment | |
accuracy_scores.append(None) | |
style_scores.append(None) | |
# Add new columns to the dataset | |
if "accuracy" in dataset.column_names: | |
dataset = dataset.remove_columns(["accuracy"]) | |
dataset = dataset.add_column("accuracy", accuracy_scores) | |
if "style" in dataset.column_names: | |
dataset = dataset.remove_columns(["style"]) | |
dataset = dataset.add_column("style", style_scores) | |
dataset.push_to_hub(f"{DATASET_HUGGINGFACE_WORKSPACE}/{model_id.split('/')[-1]}-results") | |
return dataset | |
def check_if_huggingface_model_exists(model_id: str, default_value: str) -> str: | |
api = HfApi() | |
try: | |
api.model_info(model_id) | |
print(f"Found model on HF: '{model_id}'.") # noqa | |
except RepositoryNotFoundError: | |
print(f"Model '{model_id}' does not exist.") # noqa | |
model_id = default_value | |
print(f"Defaulting to '{model_id}'") # noqa | |
print("Train your own model to avoid this behavior.") # noqa | |
return model_id | |
def check_if_huggingface_dataset_exists(dataset_id: str, default_value: str) -> str: | |
api = HfApi() | |
try: | |
api.dataset_info(dataset_id) | |
print(f"Found dataset on HF: '{dataset_id}'.") # noqa | |
except RepositoryNotFoundError: | |
print(f"Dataset '{dataset_id}' does not exist.") # noqa | |
dataset_id = default_value | |
print(f"Defaulting to '{dataset_id}'") # noqa | |
print("Use a valid dataset or create your own to avoid this behavior.") # noqa | |
return dataset_id | |
model_ids = [ | |
check_if_huggingface_model_exists( | |
f"{MODEL_HUGGINGFACE_WORKSPACE}/TwinLlama-3.1-8B", default_value="mlabonne/TwinLlama-3.1-8B" | |
), | |
check_if_huggingface_model_exists( | |
f"{MODEL_HUGGINGFACE_WORKSPACE}/TwinLlama-3.1-8B-DPO", default_value="mlabonne/TwinLlama-3.1-8B-DPO" | |
), | |
"meta-llama/Meta-Llama-3.1-8B-Instruct", | |
] | |
if __name__ == "__main__": | |
# Run generation | |
for model_id in model_ids: | |
dataset_name = check_if_huggingface_dataset_exists( | |
f"{DATASET_HUGGINGFACE_WORKSPACE}/llmtwin", default_value="mlabonne/llmtwin" | |
) | |
generate_answers(model_id, dataset_name=dataset_name) | |
# Run evaluation | |
for model_id in model_ids: | |
evaluate_answers(model_id) | |
# Analyze results | |
for model_id in model_ids: | |
dataset = load_dataset(f"{DATASET_HUGGINGFACE_WORKSPACE}/{model_id.split('/')[-1]}-results", split="all") | |
score = sum(dataset["accuracy"]) / len(dataset["accuracy"]) | |
print(f"{model_id.split('/')[-1]} - Accuracy: {score:.2f}") # noqa | |
score = sum(dataset["style"]) / len(dataset["style"]) | |
print(f"{model_id.split('/')[-1]} - Style: {score:.2f}") # noqa | |