SkazuHD's picture
init space
d660b02
import concurrent.futures
import gc
import json
import os
from datasets import Dataset, load_dataset
from huggingface_hub import HfApi
from huggingface_hub.utils import RepositoryNotFoundError
from openai import OpenAI
from tqdm.auto import tqdm
from vllm import LLM, SamplingParams
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
DATASET_HUGGINGFACE_WORKSPACE = os.environ["DATASET_HUGGINGFACE_WORKSPACE"]
MODEL_HUGGINGFACE_WORKSPACE = os.environ["MODEL_HUGGINGFACE_WORKSPACE"]
IS_DUMMY = os.environ.get("IS_DUMMY", False)
print("====== EVAL PARAMETERS ======") # noqa
print(f"{DATASET_HUGGINGFACE_WORKSPACE=}") # noqa
print(f"{MODEL_HUGGINGFACE_WORKSPACE=}") # noqa
print(f"{IS_DUMMY=}") # noqa
print("=============================") # noqa
def generate_answers(model_id: str, dataset_name: str):
def format(sample):
return "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{}\n\n### Response:\n".format(
sample["instruction"]
)
dataset = load_dataset(dataset_name, split="test")
if IS_DUMMY:
dataset = dataset.select(range(10))
print(f"Dataset size: {len(dataset)}") # noqa
dataset = dataset.map(lambda sample: {"prompt": format(sample)})
print(f"Generating answers for {model_id}") # noqa
llm = LLM(model=model_id, max_model_len=2048)
sampling_params = SamplingParams(temperature=0.8, top_p=0.95, min_p=0.05, max_tokens=2048)
outputs = llm.generate(dataset["prompt"], sampling_params)
answers = [output.outputs[0].text for output in outputs]
dataset = dataset.add_column("answers", answers)
print(f"Uploading results for {model_id}") # noqa
dataset.push_to_hub(f"{DATASET_HUGGINGFACE_WORKSPACE}/{model_id.split('/')[-1]}-results")
gc.collect()
return dataset
def evaluate_answer(instruction: str, answer: str, client: OpenAI) -> dict:
prompt = f"""You are an expert judge. Please evaluate the quality of a given answer to an instruction based on two criteria:
1. Accuracy: How factually correct is the information presented in the answer? You are a technical expert in this topic.
2. Style: Is the tone and writing style appropriate for a blog post or social media content? It should use simple but technical words and avoid formal or academic language.
Accuracy scale:
1 (Poor): Contains factual errors or misleading information
2 (Good): Mostly accurate with minor errors or omissions
3 (Excellent): Highly accurate and comprehensive
Style scale:
1 (Poor): Too formal, uses some overly complex words
2 (Good): Good balance of technical content and accessibility, but still uses formal words and expressions
3 (Excellent): Perfectly accessible language for blog/social media, uses simple but precise technical terms when necessary
Example of bad style: The Llama2 7B model constitutes a noteworthy progression in the field of artificial intelligence, serving as the successor to its predecessor, the original Llama architecture.
Example of excellent style: Llama2 7B outperforms the original Llama model across multiple benchmarks.
Instruction: {instruction}
Answer: {answer}
Provide your evaluation in JSON format with the following structure:
{{
"accuracy": {{
"analysis": "...",
"score": 0
}},
"style": {{
"analysis": "...",
"score": 0
}}
}}
"""
completion = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{
"role": "system",
"content": "You are a helpful assistant who evaluates answers based on accuracy and style. Provide your response in JSON format with a short analysis and score for each criterion.",
},
{"role": "user", "content": prompt},
],
response_format={"type": "json_object"},
max_tokens=1000,
temperature=0.9,
)
# Parse the structured output
return json.loads(completion.choices[0].message.content)
def evaluate_batch(batch, start_index):
client = OpenAI(api_key=OPENAI_API_KEY)
return [(i, evaluate_answer(instr, ans, client)) for i, (instr, ans) in enumerate(batch, start=start_index)]
def evaluate_answers(model_id: str, num_threads: int = 10, batch_size: int = 5) -> Dataset:
# Load the dataset
dataset = load_dataset(f"{DATASET_HUGGINGFACE_WORKSPACE}/{model_id.split('/')[-1]}-results", split="all")
# Create batches of instruction-answer pairs with their original indices
batches = [
(i, list(zip(dataset["instruction"][i : i + batch_size], dataset["answers"][i : i + batch_size], strict=False)))
for i in range(0, len(dataset), batch_size)
]
evaluations = [None] * len(dataset)
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
futures = [executor.submit(evaluate_batch, batch, start_index) for start_index, batch in batches]
for future in tqdm(concurrent.futures.as_completed(futures), total=len(futures)):
for index, evaluation in future.result():
evaluations[index] = evaluation
# Replace the 'evaluation' column if it exists, otherwise add it
if "evaluation" in dataset.column_names:
dataset = dataset.remove_columns(["evaluation"])
dataset = dataset.add_column("evaluation", evaluations)
# Post-process evaluations
accuracy_scores = []
style_scores = []
for evaluation in dataset["evaluation"]:
try:
eval_dict = json.loads(evaluation) if isinstance(evaluation, str) else evaluation
accuracy_score = eval_dict["accuracy"]["score"]
style_score = eval_dict["style"]["score"]
accuracy_scores.append(accuracy_score)
style_scores.append(style_score)
except (json.JSONDecodeError, KeyError, TypeError):
# If there's an error, append None to maintain alignment
accuracy_scores.append(None)
style_scores.append(None)
# Add new columns to the dataset
if "accuracy" in dataset.column_names:
dataset = dataset.remove_columns(["accuracy"])
dataset = dataset.add_column("accuracy", accuracy_scores)
if "style" in dataset.column_names:
dataset = dataset.remove_columns(["style"])
dataset = dataset.add_column("style", style_scores)
dataset.push_to_hub(f"{DATASET_HUGGINGFACE_WORKSPACE}/{model_id.split('/')[-1]}-results")
return dataset
def check_if_huggingface_model_exists(model_id: str, default_value: str) -> str:
api = HfApi()
try:
api.model_info(model_id)
print(f"Found model on HF: '{model_id}'.") # noqa
except RepositoryNotFoundError:
print(f"Model '{model_id}' does not exist.") # noqa
model_id = default_value
print(f"Defaulting to '{model_id}'") # noqa
print("Train your own model to avoid this behavior.") # noqa
return model_id
def check_if_huggingface_dataset_exists(dataset_id: str, default_value: str) -> str:
api = HfApi()
try:
api.dataset_info(dataset_id)
print(f"Found dataset on HF: '{dataset_id}'.") # noqa
except RepositoryNotFoundError:
print(f"Dataset '{dataset_id}' does not exist.") # noqa
dataset_id = default_value
print(f"Defaulting to '{dataset_id}'") # noqa
print("Use a valid dataset or create your own to avoid this behavior.") # noqa
return dataset_id
model_ids = [
check_if_huggingface_model_exists(
f"{MODEL_HUGGINGFACE_WORKSPACE}/TwinLlama-3.1-8B", default_value="mlabonne/TwinLlama-3.1-8B"
),
check_if_huggingface_model_exists(
f"{MODEL_HUGGINGFACE_WORKSPACE}/TwinLlama-3.1-8B-DPO", default_value="mlabonne/TwinLlama-3.1-8B-DPO"
),
"meta-llama/Meta-Llama-3.1-8B-Instruct",
]
if __name__ == "__main__":
# Run generation
for model_id in model_ids:
dataset_name = check_if_huggingface_dataset_exists(
f"{DATASET_HUGGINGFACE_WORKSPACE}/llmtwin", default_value="mlabonne/llmtwin"
)
generate_answers(model_id, dataset_name=dataset_name)
# Run evaluation
for model_id in model_ids:
evaluate_answers(model_id)
# Analyze results
for model_id in model_ids:
dataset = load_dataset(f"{DATASET_HUGGINGFACE_WORKSPACE}/{model_id.split('/')[-1]}-results", split="all")
score = sum(dataset["accuracy"]) / len(dataset["accuracy"])
print(f"{model_id.split('/')[-1]} - Accuracy: {score:.2f}") # noqa
score = sum(dataset["style"]) / len(dataset["style"])
print(f"{model_id.split('/')[-1]} - Style: {score:.2f}") # noqa