Spaces:
Sleeping
Sleeping
static void llama_log_softmax(float * array, size_t size) { | |
float max_l = *std::max_element(array, array + size); | |
float sum = 0.f; | |
for (size_t i = 0; i < size; ++i) { | |
float p = expf(array[i] - max_l); | |
sum += p; | |
array[i] = p; | |
} | |
for (size_t i = 0; i < size; ++i) { | |
array[i] = logf(array[i] / sum); | |
} | |
} | |
void llama_set_rng_seed_impl(struct llama_sampling * smpl, uint32_t seed) { | |
if (seed == LLAMA_DEFAULT_SEED) { | |
seed = time(NULL); | |
} | |
smpl->rng.seed(seed); | |
} | |
void llama_sample_softmax_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) { | |
GGML_ASSERT(candidates->size > 0); | |
const int64_t t_start_sample_us = ggml_time_us(); | |
// Sort the logits in descending order | |
if (!candidates->sorted) { | |
std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { | |
return a.logit > b.logit; | |
}); | |
candidates->sorted = true; | |
} | |
float max_l = candidates->data[0].logit; | |
float cum_sum = 0.0f; | |
for (size_t i = 0; i < candidates->size; ++i) { | |
float p = expf(candidates->data[i].logit - max_l); | |
candidates->data[i].p = p; | |
cum_sum += p; | |
} | |
for (size_t i = 0; i < candidates->size; ++i) { | |
candidates->data[i].p /= cum_sum; | |
} | |
if (smpl) { | |
smpl->t_sample_us += ggml_time_us() - t_start_sample_us; | |
} | |
} | |
void llama_sample_top_k_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, int32_t k, size_t min_keep) { | |
// TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast | |
// if (k >= (int32_t)candidates->size) { | |
// return; | |
// } | |
const int64_t t_start_sample_us = ggml_time_us(); | |
if (k <= 0) { | |
k = candidates->size; | |
} | |
k = std::max(k, (int) min_keep); | |
k = std::min(k, (int) candidates->size); | |
// Sort scores in descending order | |
if (!candidates->sorted) { | |
auto comp = [](const llama_token_data & a, const llama_token_data & b) { | |
return a.logit > b.logit; | |
}; | |
if (k <= 128) { | |
std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp); | |
} else { | |
constexpr int nbuckets = 128; | |
constexpr float bucket_low = -10.0f; | |
constexpr float bucket_high = 10.0f; | |
constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low); | |
constexpr float bucket_inter = -bucket_low * bucket_scale; | |
std::vector<int> bucket_idx(candidates->size); | |
std::vector<int> histo(nbuckets, 0); | |
for (int i = 0; i < (int)candidates->size; ++i) { | |
const float val = candidates->data[i].logit; | |
int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low); | |
ib = std::max(0, std::min(nbuckets-1, ib)); | |
bucket_idx[i] = ib; | |
++histo[ib]; | |
} | |
int nhave = 0; | |
int ib = nbuckets - 1; | |
for ( ; ib >= 0; --ib) { | |
nhave += histo[ib]; | |
if (nhave >= k) break; | |
} | |
std::vector<llama_token_data> tmp_tokens(nhave); | |
auto ptr = tmp_tokens.data(); | |
std::vector<llama_token_data*> bucket_ptrs; | |
bucket_ptrs.reserve(nbuckets - ib); | |
for (int j = nbuckets - 1; j >= ib; --j) { | |
bucket_ptrs.push_back(ptr); | |
ptr += histo[j]; | |
} | |
for (int i = 0; i < (int)candidates->size; ++i) { | |
int j = bucket_idx[i]; | |
if (j >= ib) { | |
*bucket_ptrs[nbuckets-1-j]++ = candidates->data[i]; | |
} | |
} | |
ptr = tmp_tokens.data(); | |
int ndone = 0; | |
for (int j = nbuckets-1; j > ib; --j) { | |
std::sort(ptr, ptr + histo[j], comp); | |
ptr += histo[j]; | |
ndone += histo[j]; | |
} | |
std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp); | |
std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data)); | |
} | |
candidates->sorted = true; | |
} | |
candidates->size = k; | |
if (smpl) { | |
smpl->t_sample_us += ggml_time_us() - t_start_sample_us; | |
} | |
} | |
void llama_sample_top_p_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) { | |
if (p >= 1.0f) { | |
return; | |
} | |
llama_sample_softmax_impl(smpl, candidates); | |
const int64_t t_start_sample_us = ggml_time_us(); | |
// Compute the cumulative probabilities | |
float cum_sum = 0.0f; | |
size_t last_idx = candidates->size; | |
for (size_t i = 0; i < candidates->size; ++i) { | |
cum_sum += candidates->data[i].p; | |
// Check if the running sum is at least p or if we have kept at least min_keep tokens | |
// we set the last index to i+1 to indicate that the current iterate should be included in the set | |
if (cum_sum >= p && i + 1 >= min_keep) { | |
last_idx = i + 1; | |
break; | |
} | |
} | |
// Resize the output vector to keep only the top-p tokens | |
candidates->size = last_idx; | |
if (smpl) { | |
smpl->t_sample_us += ggml_time_us() - t_start_sample_us; | |
} | |
} | |
void llama_sample_min_p_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) { | |
if (p <= 0.0f || !candidates->size) { | |
return; | |
} | |
const int64_t t_start_sample_us = ggml_time_us(); | |
bool min_p_applied = false; | |
// if the candidates aren't sorted, try the unsorted implementation first | |
if (!candidates->sorted) { | |
std::vector<llama_token_data> filtered_tokens; | |
float max_logit = -FLT_MAX; | |
for (size_t i = 0; i < candidates->size; ++i) { | |
max_logit = std::max(max_logit, candidates->data[i].logit); | |
} | |
const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max | |
for (size_t i = 0; i < candidates->size; ++i) { | |
if (candidates->data[i].logit >= min_logit) { | |
filtered_tokens.push_back(candidates->data[i]); | |
} | |
} | |
// if we have enough values the operation was a success | |
if (filtered_tokens.size() >= min_keep) { | |
memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data)); | |
candidates->size = filtered_tokens.size(); | |
min_p_applied = true; | |
} | |
} | |
// if the candidates are sorted or the unsorted implementation failed, use this implementation | |
if (!min_p_applied) { | |
// Sort the logits in descending order | |
if (!candidates->sorted) { | |
std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { | |
return a.logit > b.logit; | |
}); | |
candidates->sorted = true; | |
} | |
const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max | |
size_t i = 1; // first token always matches | |
for (; i < candidates->size; ++i) { | |
if (candidates->data[i].logit < min_logit && i >= min_keep) { | |
break; // prob too small | |
} | |
} | |
// Resize the output vector to keep only the matching tokens | |
candidates->size = i; | |
} | |
if (smpl) { | |
smpl->t_sample_us += ggml_time_us() - t_start_sample_us; | |
} | |
} | |
void llama_sample_tail_free_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float z, size_t min_keep) { | |
if (z >= 1.0f || candidates->size <= 2) { | |
return; | |
} | |
llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates); | |
const int64_t t_start_sample_us = ggml_time_us(); | |
// Compute the first and second derivatives | |
std::vector<float> first_derivatives(candidates->size - 1); | |
std::vector<float> second_derivatives(candidates->size - 2); | |
for (size_t i = 0; i < first_derivatives.size(); ++i) { | |
first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p; | |
} | |
for (size_t i = 0; i < second_derivatives.size(); ++i) { | |
second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1]; | |
} | |
// Calculate absolute value of second derivatives | |
for (size_t i = 0; i < second_derivatives.size(); ++i) { | |
second_derivatives[i] = std::abs(second_derivatives[i]); | |
} | |
// Normalize the second derivatives | |
{ | |
const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f); | |
if (second_derivatives_sum > 1e-6f) { | |
for (float & value : second_derivatives) { | |
value /= second_derivatives_sum; | |
} | |
} else { | |
for (float & value : second_derivatives) { | |
value = 1.0f / second_derivatives.size(); | |
} | |
} | |
} | |
float cum_sum = 0.0f; | |
size_t last_idx = candidates->size; | |
for (size_t i = 0; i < second_derivatives.size(); ++i) { | |
cum_sum += second_derivatives[i]; | |
// Check if the running sum is greater than z or if we have kept at least min_keep tokens | |
if (cum_sum > z && i >= min_keep) { | |
last_idx = i; | |
break; | |
} | |
} | |
// Resize the output vector to keep only the tokens above the tail location | |
candidates->size = last_idx; | |
if (smpl) { | |
smpl->t_sample_us += ggml_time_us() - t_start_sample_us; | |
} | |
} | |
void llama_sample_typical_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) { | |
// Reference implementation: | |
// https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr | |
if (p >= 1.0f) { | |
return; | |
} | |
// Compute the softmax of logits and calculate entropy | |
llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates); | |
const int64_t t_start_sample_us = ggml_time_us(); | |
float entropy = 0.0f; | |
for (size_t i = 0; i < candidates->size; ++i) { | |
entropy += -candidates->data[i].p * logf(candidates->data[i].p); | |
} | |
// Compute the absolute difference between negative log probability and entropy for each candidate | |
std::vector<float> shifted_scores; | |
for (size_t i = 0; i < candidates->size; ++i) { | |
float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy); | |
shifted_scores.push_back(shifted_score); | |
} | |
// Sort tokens based on the shifted_scores and their corresponding indices | |
std::vector<size_t> indices(candidates->size); | |
std::iota(indices.begin(), indices.end(), 0); | |
std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) { | |
return shifted_scores[a] < shifted_scores[b]; | |
}); | |
// Compute the cumulative probabilities | |
float cum_sum = 0.0f; | |
size_t last_idx = indices.size(); | |
for (size_t i = 0; i < indices.size(); ++i) { | |
size_t idx = indices[i]; | |
cum_sum += candidates->data[idx].p; | |
// Check if the running sum is greater than typical or if we have kept at least min_keep tokens | |
if (cum_sum > p && i >= min_keep - 1) { | |
last_idx = i + 1; | |
break; | |
} | |
} | |
// Resize the output vector to keep only the locally typical tokens | |
std::vector<llama_token_data> new_candidates; | |
for (size_t i = 0; i < last_idx; ++i) { | |
size_t idx = indices[i]; | |
new_candidates.push_back(candidates->data[idx]); | |
} | |
// Replace the data in candidates with the new_candidates data | |
std::copy(new_candidates.begin(), new_candidates.end(), candidates->data); | |
candidates->size = new_candidates.size(); | |
candidates->sorted = false; | |
if (smpl) { | |
smpl->t_sample_us += ggml_time_us() - t_start_sample_us; | |
} | |
} | |
void llama_sample_entropy_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float min_temp, float max_temp, float exponent_val) { | |
const int64_t t_start_sample_us = ggml_time_us(); | |
// no need to do anything if there is only one (or zero) candidates | |
if(candidates->size <= 1) { | |
return; | |
} | |
// Calculate maximum possible entropy | |
float max_entropy = -logf(1.0f / candidates->size); | |
llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates); | |
// Calculate entropy of the softmax probabilities | |
float entropy = 0.0f; | |
for (size_t i = 0; i < candidates->size; ++i) { | |
float prob = candidates->data[i].p; | |
if (prob > 0.0f) { // Ensure no log(0) | |
entropy -= prob * logf(prob); | |
} | |
} | |
// Normalize the entropy (max_entropy cannot be 0 here because we checked candidates->size != 1 above) | |
float normalized_entropy = entropy / max_entropy; | |
// Map the normalized entropy to the desired temperature range using the power function | |
float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val); | |
LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp); | |
LLAMA_LOG_INFO("Entropy: %f\n", entropy); | |
LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy); | |
LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy); | |
LLAMA_LOG_INFO("Exponent: %f\n", exponent_val); | |
LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp); | |
// Apply the dynamically calculated temperature scaling | |
for (size_t i = 0; i < candidates->size; ++i) { | |
candidates->data[i].logit /= dyn_temp; | |
} | |
// Re-compute softmax probabilities after scaling logits with dynamic temperature | |
double max_l_double = candidates->data[0].logit; | |
double cum_sum_double = 0.0; | |
for (size_t i = 0; i < candidates->size; ++i) { | |
double p = exp(candidates->data[i].logit - max_l_double); | |
candidates->data[i].p = p; // Store the scaled probability | |
cum_sum_double += p; | |
} | |
for (size_t i = 0; i < candidates->size; ++i) { | |
candidates->data[i].p /= cum_sum_double; // Re-normalize the probabilities | |
} | |
// Print the updated top 25 probabilities after temperature scaling | |
LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n"); | |
for (size_t i = 0; i < 25 && i < candidates->size; ++i) { | |
LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates->data[i].p * 100.0f); | |
} | |
if (smpl) { | |
smpl->t_sample_us += ggml_time_us() - t_start_sample_us; | |
} | |
} | |
void llama_sample_temp_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float temp) { | |
const int64_t t_start_sample_us = ggml_time_us(); | |
for (size_t i = 0; i < candidates->size; ++i) { | |
candidates->data[i].logit /= temp; | |
} | |
if (smpl) { | |
smpl->t_sample_us += ggml_time_us() - t_start_sample_us; | |
} | |
} | |
void llama_sample_repetition_penalties_impl( | |
struct llama_sampling * smpl, | |
llama_token_data_array * candidates, | |
const llama_token * last_tokens, | |
size_t penalty_last_n, | |
float penalty_repeat, | |
float penalty_freq, | |
float penalty_present) { | |
if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) { | |
return; | |
} | |
const int64_t t_start_sample_us = ggml_time_us(); | |
// Create a frequency map to count occurrences of each token in last_tokens | |
std::unordered_map<llama_token, int> token_count; | |
for (size_t i = 0; i < penalty_last_n; ++i) { | |
token_count[last_tokens[i]]++; | |
} | |
// Apply frequency and presence penalties to the candidates | |
for (size_t i = 0; i < candidates->size; ++i) { | |
const auto token_iter = token_count.find(candidates->data[i].id); | |
if (token_iter == token_count.end()) { | |
continue; | |
} | |
const int count = token_iter->second; | |
// The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong. | |
// This is common fix for this problem, which is to multiply by the penalty instead of dividing. | |
if (candidates->data[i].logit <= 0) { | |
candidates->data[i].logit *= penalty_repeat; | |
} else { | |
candidates->data[i].logit /= penalty_repeat; | |
} | |
candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present; | |
} | |
candidates->sorted = false; | |
if (smpl) { | |
smpl->t_sample_us += ggml_time_us() - t_start_sample_us; | |
} | |
} | |
void llama_sample_apply_guidance_impl( | |
struct llama_sampling * smpl, | |
float * logits, | |
float * logits_guidance, | |
float scale) { | |
GGML_ASSERT(smpl); | |
const auto t_start_sample_us = ggml_time_us(); | |
const auto n_vocab = smpl->n_vocab; | |
llama_log_softmax(logits, n_vocab); | |
llama_log_softmax(logits_guidance, n_vocab); | |
for (int i = 0; i < n_vocab; ++i) { | |
auto & l = logits[i]; | |
const auto & g = logits_guidance[i]; | |
l = scale * (l - g) + g; | |
} | |
smpl->t_sample_us += ggml_time_us() - t_start_sample_us; | |
} | |
llama_token llama_sample_token_mirostat_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) { | |
GGML_ASSERT(smpl); | |
const int32_t n_vocab = float(smpl->n_vocab); | |
int64_t t_start_sample_us = ggml_time_us(); | |
llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates); | |
// Estimate s_hat using the most probable m tokens | |
float s_hat = 0.0; | |
float sum_ti_bi = 0.0; | |
float sum_ti_sq = 0.0; | |
for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) { | |
float t_i = logf(float(i + 2) / float(i + 1)); | |
float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p); | |
sum_ti_bi += t_i * b_i; | |
sum_ti_sq += t_i * t_i; | |
} | |
s_hat = sum_ti_bi / sum_ti_sq; | |
// Compute k from the estimated s_hat and target surprise value | |
float epsilon_hat = s_hat - 1; | |
float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(n_vocab, -epsilon_hat)), 1 / s_hat); | |
// Sample the next word X using top-k sampling | |
llama_sample_top_k_impl((struct llama_sampling *) nullptr, candidates, int(k), 1); | |
smpl->t_sample_us += ggml_time_us() - t_start_sample_us; | |
llama_token X = llama_sample_token_impl(smpl, candidates); | |
t_start_sample_us = ggml_time_us(); | |
// Compute error as the difference between observed surprise and target surprise value | |
size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { | |
return candidate.id == X; | |
})); | |
float observed_surprise = -log2f(candidates->data[X_idx].p); | |
float e = observed_surprise - tau; | |
// Update mu using the learning rate and error | |
*mu = *mu - eta * e; | |
smpl->t_sample_us += ggml_time_us() - t_start_sample_us; | |
return X; | |
} | |
llama_token llama_sample_token_mirostat_v2_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float tau, float eta, float * mu) { | |
int64_t t_start_sample_us; | |
t_start_sample_us = ggml_time_us(); | |
llama_sample_softmax_impl(smpl, candidates); | |
// Truncate the words with surprise values greater than mu | |
candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { | |
return -log2f(candidate.p) > *mu; | |
})); | |
if (candidates->size == 0) { | |
candidates->size = 1; | |
} | |
if (smpl) { | |
smpl->t_sample_us += ggml_time_us() - t_start_sample_us; | |
} | |
// Normalize the probabilities of the remaining words | |
llama_sample_softmax_impl(smpl, candidates); | |
// Sample the next word X from the remaining words | |
llama_token X = llama_sample_token_impl(smpl, candidates); | |
t_start_sample_us = ggml_time_us(); | |
// Compute error as the difference between observed surprise and target surprise value | |
size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { | |
return candidate.id == X; | |
})); | |
float observed_surprise = -log2f(candidates->data[X_idx].p); | |
float e = observed_surprise - tau; | |
// Update mu using the learning rate and error | |
*mu = *mu - eta * e; | |
if (smpl) { | |
smpl->t_sample_us += ggml_time_us() - t_start_sample_us; | |
} | |
return X; | |
} | |
llama_token llama_sample_token_greedy_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) { | |
const int64_t t_start_sample_us = ggml_time_us(); | |
// Find max element | |
auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { | |
return a.logit < b.logit; | |
}); | |
llama_token result = max_iter->id; | |
if (smpl) { | |
smpl->t_sample_us += ggml_time_us() - t_start_sample_us; | |
smpl->n_sample++; | |
} | |
return result; | |
} | |
llama_token llama_sample_token_with_rng_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, std::mt19937 & rng) { | |
GGML_ASSERT(smpl); | |
const int64_t t_start_sample_us = ggml_time_us(); | |
llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates); | |
std::vector<float> probs; | |
probs.reserve(candidates->size); | |
for (size_t i = 0; i < candidates->size; ++i) { | |
probs.push_back(candidates->data[i].p); | |
} | |
std::discrete_distribution<> dist(probs.begin(), probs.end()); | |
int idx = dist(rng); | |
llama_token result = candidates->data[idx].id; | |
smpl->t_sample_us += ggml_time_us() - t_start_sample_us; | |
smpl->n_sample++; | |
return result; | |
} | |
llama_token llama_sample_token_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) { | |
return llama_sample_token_with_rng_impl(smpl, candidates, smpl->rng); | |
} | |