Spaces:
Sleeping
Sleeping
## Whisper model files in custom `ggml` format | |
The [original Whisper PyTorch models provided by OpenAI](https://github.com/openai/whisper/blob/main/whisper/__init__.py#L17-L30) | |
are converted to custom `ggml` format in order to be able to load them in C/C++. | |
Conversion is performed using the [convert-pt-to-ggml.py](convert-pt-to-ggml.py) script. | |
There are three ways to obtain `ggml` models: | |
### 1. Use [download-ggml-model.sh](download-ggml-model.sh) to download pre-converted models | |
Example download: | |
```text | |
$ ./download-ggml-model.sh base.en | |
Downloading ggml model base.en ... | |
models/ggml-base.en.bin 100%[=============================================>] 141.11M 5.41MB/s in 22s | |
Done! Model 'base.en' saved in 'models/ggml-base.en.bin' | |
You can now use it like this: | |
$ ./main -m models/ggml-base.en.bin -f samples/jfk.wav | |
``` | |
### 2. Manually download pre-converted models | |
`ggml` models are available from the following locations: | |
- https://huggingface.co/ggerganov/whisper.cpp/tree/main | |
- https://ggml.ggerganov.com | |
### 3. Convert with [convert-pt-to-ggml.py](convert-pt-to-ggml.py) | |
Download one of the [models provided by OpenAI](https://github.com/openai/whisper/blob/main/whisper/__init__.py#L17-L30) and generate the `ggml` files using the [convert-pt-to-ggml.py](convert-pt-to-ggml.py) script. | |
Example conversion, assuming the original PyTorch files have been downloaded into `~/.cache/whisper`. Change `~/path/to/repo/whisper/` to the location for your copy of the Whisper source: | |
```bash | |
mkdir models/whisper-medium | |
python models/convert-pt-to-ggml.py ~/.cache/whisper/medium.pt ~/path/to/repo/whisper/ ./models/whisper-medium | |
mv ./models/whisper-medium/ggml-model.bin models/ggml-medium.bin | |
rmdir models/whisper-medium | |
``` | |
## Available models | |
| Model | Disk | SHA | | |
| ------------- | ------- | ------------------------------------------ | | |
| tiny | 75 MiB | `bd577a113a864445d4c299885e0cb97d4ba92b5f` | | |
| tiny.en | 75 MiB | `c78c86eb1a8faa21b369bcd33207cc90d64ae9df` | | |
| base | 142 MiB | `465707469ff3a37a2b9b8d8f89f2f99de7299dac` | | |
| base.en | 142 MiB | `137c40403d78fd54d454da0f9bd998f78703390c` | | |
| small | 466 MiB | `55356645c2b361a969dfd0ef2c5a50d530afd8d5` | | |
| small.en | 466 MiB | `db8a495a91d927739e50b3fc1cc4c6b8f6c2d022` | | |
| small.en-tdrz | 465 MiB | `b6c6e7e89af1a35c08e6de56b66ca6a02a2fdfa1` | | |
| medium | 1.5 GiB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` | | |
| medium.en | 1.5 GiB | `8c30f0e44ce9560643ebd10bbe50cd20eafd3723` | | |
| large-v1 | 2.9 GiB | `b1caaf735c4cc1429223d5a74f0f4d0b9b59a299` | | |
| large-v2 | 2.9 GiB | `0f4c8e34f21cf1a914c59d8b3ce882345ad349d6` | | |
| large-v2-q5_0 | 1.1 GiB | `00e39f2196344e901b3a2bd5814807a769bd1630` | | |
| large-v3 | 2.9 GiB | `ad82bf6a9043ceed055076d0fd39f5f186ff8062` | | |
| large-v3-q5_0 | 1.1 GiB | `e6e2ed78495d403bef4b7cff42ef4aaadcfea8de` | | |
Models are multilingual unless the model name includes `.en`. Models ending in `-q5_0` are [quantized](../README.md#quantization). Models ending in `-tdrz` support local diarization (marking of speaker turns) using [tinydiarize](https://github.com/akashmjn/tinydiarize). More information about models is available [upstream (openai/whisper)](https://github.com/openai/whisper#available-models-and-languages). The list above is a subset of the models supported by the [download-ggml-model.sh](download-ggml-model.sh) script, but many more are available at https://huggingface.co/ggerganov/whisper.cpp/tree/main and elsewhere. | |
## Model files for testing purposes | |
The model files prefixed with `for-tests-` are empty (i.e. do not contain any weights) and are used by the CI for | |
testing purposes. They are directly included in this repository for convenience and the Github Actions CI uses them to | |
run various sanitizer tests. | |
## Fine-tuned models | |
There are community efforts for creating fine-tuned Whisper models using extra training data. For example, this | |
[blog post](https://huggingface.co/blog/fine-tune-whisper) describes a method for fine-tuning using Hugging Face (HF) | |
Transformer implementation of Whisper. The produced models are in slightly different format compared to the original | |
OpenAI format. To read the HF models you can use the [convert-h5-to-ggml.py](convert-h5-to-ggml.py) script like this: | |
```bash | |
git clone https://github.com/openai/whisper | |
git clone https://github.com/ggerganov/whisper.cpp | |
# clone HF fine-tuned model (this is just an example) | |
git clone https://huggingface.co/openai/whisper-medium | |
# convert the model to ggml | |
python3 ./whisper.cpp/models/convert-h5-to-ggml.py ./whisper-medium/ ./whisper . | |
``` | |
## Distilled models | |
Initial support for https://huggingface.co/distil-whisper is available. | |
Currently, the chunk-based transcription strategy is not implemented, so there can be sub-optimal quality when using the distilled models with `whisper.cpp`. | |
```bash | |
# clone OpenAI whisper and whisper.cpp | |
git clone https://github.com/openai/whisper | |
git clone https://github.com/ggerganov/whisper.cpp | |
# get the models | |
cd whisper.cpp/models | |
git clone https://huggingface.co/distil-whisper/distil-medium.en | |
git clone https://huggingface.co/distil-whisper/distil-large-v2 | |
# convert to ggml | |
python3 ./convert-h5-to-ggml.py ./distil-medium.en/ ../../whisper . | |
mv ggml-model.bin ggml-medium.en-distil.bin | |
python3 ./convert-h5-to-ggml.py ./distil-large-v2/ ../../whisper . | |
mv ggml-model.bin ggml-large-v2-distil.bin | |
``` | |