Spaces:
Sleeping
Sleeping
import torch.nn as nn | |
class Block(nn.Module): | |
def __init__(self, in_channels, out_channels, down=True, act="relu", use_dropout=False): | |
super().__init__() | |
self.conv = nn.Sequential( | |
nn.Conv2d(in_channels, out_channels, 4, 2, 1, bias=False, padding_mode="reflect") | |
if down | |
else nn.ConvTranspose2d(in_channels, out_channels, 4, 2, 1, bias=False), | |
nn.BatchNorm2d(out_channels), | |
nn.ReLU() if act == "relu" else nn.LeakyReLU(0.2), | |
) | |
self.use_dropout = use_dropout | |
self.dropout = nn.Dropout(0.5) | |
self.down = down | |
def forward(self, x): | |
x = self.conv(x) | |
return self.dropout(x) | |
class BlockCNN(nn.Module): | |
def __init__(self, in_channels, out_channels, stride=2): | |
super().__init__() | |
self.conv = nn.Sequential( | |
nn.Conv2d(in_channels, out_channels, 4, stride, bias=False, padding_mode="reflect"), | |
nn.BatchNorm2d(out_channels), | |
nn.LeakyReLU(0.2), | |
) | |
def forward(self, x): | |
return self.conv(x) | |