Muhammad Naufal Rizqullah
first commit
ae0af75
import torch.nn as nn
class Block(nn.Module):
def __init__(self, in_channels, out_channels, down=True, act="relu", use_dropout=False):
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 4, 2, 1, bias=False, padding_mode="reflect")
if down
else nn.ConvTranspose2d(in_channels, out_channels, 4, 2, 1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU() if act == "relu" else nn.LeakyReLU(0.2),
)
self.use_dropout = use_dropout
self.dropout = nn.Dropout(0.5)
self.down = down
def forward(self, x):
x = self.conv(x)
return self.dropout(x)
class BlockCNN(nn.Module):
def __init__(self, in_channels, out_channels, stride=2):
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 4, stride, bias=False, padding_mode="reflect"),
nn.BatchNorm2d(out_channels),
nn.LeakyReLU(0.2),
)
def forward(self, x):
return self.conv(x)