Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from models.base import Block | |
class Generator(nn.Module): | |
def __init__(self, in_channels=3, features=64): | |
super().__init__() | |
self.initial_down = nn.Sequential( | |
nn.Conv2d(in_channels, features, 4, 2, 1, padding_mode="reflect"), | |
nn.LeakyReLU(0.2), | |
) | |
self.down1 = Block(features, features * 2, down=True, act="leaky", use_dropout=False) | |
self.down2 = Block(features * 2, features * 4, down=True, act="leaky", use_dropout=False) | |
self.down3 = Block(features * 4, features * 8, down=True, act="leaky", use_dropout=False) | |
self.down4 = Block(features * 8, features * 8, down=True, act="leaky", use_dropout=False) | |
self.down5 = Block(features * 8, features * 8, down=True, act="leaky", use_dropout=False) | |
self.down6 = Block(features * 8, features * 8, down=True, act="leaky", use_dropout=False) | |
self.bottleneck = nn.Sequential( | |
nn.Conv2d(features * 8, features * 8, 4, 2, 1), | |
nn.ReLU() | |
) | |
self.up1 = Block(features * 8, features * 8, down=False, act="relu", use_dropout=True) | |
self.up2 = Block(features * 8 * 2, features * 8, down=False, act="relu", use_dropout=True) | |
self.up3 = Block(features * 8 * 2, features * 8, down=False, act="relu", use_dropout=True) | |
self.up4 = Block(features * 8 * 2, features * 8, down=False, act="relu", use_dropout=False) | |
self.up5 = Block(features * 8 * 2, features * 4, down=False, act="relu", use_dropout=False) | |
self.up6 = Block(features * 4 * 2, features * 2, down=False, act="relu", use_dropout=False) | |
self.up7 = Block(features * 2 * 2, features, down=False, act="relu", use_dropout=False) | |
self.final_up = nn.Sequential( | |
nn.ConvTranspose2d(features * 2, in_channels, kernel_size=4, stride=2, padding=1), | |
nn.Tanh(), | |
) | |
def forward(self, x): | |
d1 = self.initial_down(x) | |
d2 = self.down1(d1) | |
d3 = self.down2(d2) | |
d4 = self.down3(d3) | |
d5 = self.down4(d4) | |
d6 = self.down5(d5) | |
d7 = self.down6(d6) | |
bottleneck = self.bottleneck(d7) | |
up1 = self.up1(bottleneck) | |
up2 = self.up2(torch.cat([up1, d7], 1)) | |
up3 = self.up3(torch.cat([up2, d6], 1)) | |
up4 = self.up4(torch.cat([up3, d5], 1)) | |
up5 = self.up5(torch.cat([up4, d4], 1)) | |
up6 = self.up6(torch.cat([up5, d3], 1)) | |
up7 = self.up7(torch.cat([up6, d2], 1)) | |
final_up = self.final_up(torch.cat([up7, d1], 1)) | |
return final_up | |
def test(): | |
# Test Case for Generator Model | |
x = torch.randn((1, 3, 256, 256)) | |
gen = Generator() | |
print(f"Generator Output Shape: {gen(x).shape}") |