levihsu commited on
Commit
6f0c5b9
1 Parent(s): 7ab1dcb

Delete preprocess

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. preprocess/README.txt +0 -1
  2. preprocess/humanparsing/datasets/__init__.py +0 -0
  3. preprocess/humanparsing/datasets/__pycache__/__init__.cpython-38.pyc +0 -0
  4. preprocess/humanparsing/datasets/__pycache__/simple_extractor_dataset.cpython-38.pyc +0 -0
  5. preprocess/humanparsing/datasets/datasets.py +0 -201
  6. preprocess/humanparsing/datasets/simple_extractor_dataset.py +0 -89
  7. preprocess/humanparsing/datasets/target_generation.py +0 -40
  8. preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/__pycache__/pycococreatortools.cpython-37.pyc +0 -0
  9. preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/human_to_coco.py +0 -166
  10. preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/pycococreatortools.py +0 -114
  11. preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/test_human2coco_format.py +0 -74
  12. preprocess/humanparsing/mhp_extension/detectron2/.circleci/config.yml +0 -179
  13. preprocess/humanparsing/mhp_extension/detectron2/.clang-format +0 -85
  14. preprocess/humanparsing/mhp_extension/detectron2/.flake8 +0 -9
  15. preprocess/humanparsing/mhp_extension/detectron2/.github/CODE_OF_CONDUCT.md +0 -5
  16. preprocess/humanparsing/mhp_extension/detectron2/.github/CONTRIBUTING.md +0 -49
  17. preprocess/humanparsing/mhp_extension/detectron2/.github/Detectron2-Logo-Horz.svg +0 -1
  18. preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE.md +0 -5
  19. preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/bugs.md +0 -36
  20. preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/config.yml +0 -9
  21. preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/feature-request.md +0 -31
  22. preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/questions-help-support.md +0 -26
  23. preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/unexpected-problems-bugs.md +0 -45
  24. preprocess/humanparsing/mhp_extension/detectron2/.github/pull_request_template.md +0 -9
  25. preprocess/humanparsing/mhp_extension/detectron2/.gitignore +0 -46
  26. preprocess/humanparsing/mhp_extension/detectron2/GETTING_STARTED.md +0 -79
  27. preprocess/humanparsing/mhp_extension/detectron2/INSTALL.md +0 -184
  28. preprocess/humanparsing/mhp_extension/detectron2/LICENSE +0 -201
  29. preprocess/humanparsing/mhp_extension/detectron2/MODEL_ZOO.md +0 -903
  30. preprocess/humanparsing/mhp_extension/detectron2/README.md +0 -56
  31. preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-C4.yaml +0 -18
  32. preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-DilatedC5.yaml +0 -31
  33. preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-FPN.yaml +0 -42
  34. preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RetinaNet.yaml +0 -24
  35. preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml +0 -17
  36. preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_C4_3x.yaml +0 -9
  37. preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml +0 -9
  38. preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml +0 -9
  39. preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_C4_1x.yaml +0 -6
  40. preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_C4_3x.yaml +0 -9
  41. preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_DC5_1x.yaml +0 -6
  42. preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_DC5_3x.yaml +0 -9
  43. preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml +0 -6
  44. preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml +0 -9
  45. preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml +0 -13
  46. preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/retinanet_R_101_FPN_3x.yaml +0 -8
  47. preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml +0 -5
  48. preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml +0 -8
  49. preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/rpn_R_50_C4_1x.yaml +0 -10
  50. preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/rpn_R_50_FPN_1x.yaml +0 -9
preprocess/README.txt DELETED
@@ -1 +0,0 @@
1
- We support ONNX for humanparsing now
 
 
preprocess/humanparsing/datasets/__init__.py DELETED
File without changes
preprocess/humanparsing/datasets/__pycache__/__init__.cpython-38.pyc DELETED
Binary file (159 Bytes)
 
preprocess/humanparsing/datasets/__pycache__/simple_extractor_dataset.cpython-38.pyc DELETED
Binary file (2.79 kB)
 
preprocess/humanparsing/datasets/datasets.py DELETED
@@ -1,201 +0,0 @@
1
- #!/usr/bin/env python
2
- # -*- encoding: utf-8 -*-
3
-
4
- """
5
- @Author : Peike Li
6
- @Contact : [email protected]
7
- @File : datasets.py
8
- @Time : 8/4/19 3:35 PM
9
- @Desc :
10
- @License : This source code is licensed under the license found in the
11
- LICENSE file in the root directory of this source tree.
12
- """
13
-
14
- import os
15
- import numpy as np
16
- import random
17
- import torch
18
- import cv2
19
- from torch.utils import data
20
- from utils.transforms import get_affine_transform
21
-
22
-
23
- class LIPDataSet(data.Dataset):
24
- def __init__(self, root, dataset, crop_size=[473, 473], scale_factor=0.25,
25
- rotation_factor=30, ignore_label=255, transform=None):
26
- self.root = root
27
- self.aspect_ratio = crop_size[1] * 1.0 / crop_size[0]
28
- self.crop_size = np.asarray(crop_size)
29
- self.ignore_label = ignore_label
30
- self.scale_factor = scale_factor
31
- self.rotation_factor = rotation_factor
32
- self.flip_prob = 0.5
33
- self.transform = transform
34
- self.dataset = dataset
35
-
36
- list_path = os.path.join(self.root, self.dataset + '_id.txt')
37
- train_list = [i_id.strip() for i_id in open(list_path)]
38
-
39
- self.train_list = train_list
40
- self.number_samples = len(self.train_list)
41
-
42
- def __len__(self):
43
- return self.number_samples
44
-
45
- def _box2cs(self, box):
46
- x, y, w, h = box[:4]
47
- return self._xywh2cs(x, y, w, h)
48
-
49
- def _xywh2cs(self, x, y, w, h):
50
- center = np.zeros((2), dtype=np.float32)
51
- center[0] = x + w * 0.5
52
- center[1] = y + h * 0.5
53
- if w > self.aspect_ratio * h:
54
- h = w * 1.0 / self.aspect_ratio
55
- elif w < self.aspect_ratio * h:
56
- w = h * self.aspect_ratio
57
- scale = np.array([w * 1.0, h * 1.0], dtype=np.float32)
58
- return center, scale
59
-
60
- def __getitem__(self, index):
61
- train_item = self.train_list[index]
62
-
63
- im_path = os.path.join(self.root, self.dataset + '_images', train_item + '.jpg')
64
- parsing_anno_path = os.path.join(self.root, self.dataset + '_segmentations', train_item + '.png')
65
-
66
- im = cv2.imread(im_path, cv2.IMREAD_COLOR)
67
- h, w, _ = im.shape
68
- parsing_anno = np.zeros((h, w), dtype=np.long)
69
-
70
- # Get person center and scale
71
- person_center, s = self._box2cs([0, 0, w - 1, h - 1])
72
- r = 0
73
-
74
- if self.dataset != 'test':
75
- # Get pose annotation
76
- parsing_anno = cv2.imread(parsing_anno_path, cv2.IMREAD_GRAYSCALE)
77
- if self.dataset == 'train' or self.dataset == 'trainval':
78
- sf = self.scale_factor
79
- rf = self.rotation_factor
80
- s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf)
81
- r = np.clip(np.random.randn() * rf, -rf * 2, rf * 2) if random.random() <= 0.6 else 0
82
-
83
- if random.random() <= self.flip_prob:
84
- im = im[:, ::-1, :]
85
- parsing_anno = parsing_anno[:, ::-1]
86
- person_center[0] = im.shape[1] - person_center[0] - 1
87
- right_idx = [15, 17, 19]
88
- left_idx = [14, 16, 18]
89
- for i in range(0, 3):
90
- right_pos = np.where(parsing_anno == right_idx[i])
91
- left_pos = np.where(parsing_anno == left_idx[i])
92
- parsing_anno[right_pos[0], right_pos[1]] = left_idx[i]
93
- parsing_anno[left_pos[0], left_pos[1]] = right_idx[i]
94
-
95
- trans = get_affine_transform(person_center, s, r, self.crop_size)
96
- input = cv2.warpAffine(
97
- im,
98
- trans,
99
- (int(self.crop_size[1]), int(self.crop_size[0])),
100
- flags=cv2.INTER_LINEAR,
101
- borderMode=cv2.BORDER_CONSTANT,
102
- borderValue=(0, 0, 0))
103
-
104
- if self.transform:
105
- input = self.transform(input)
106
-
107
- meta = {
108
- 'name': train_item,
109
- 'center': person_center,
110
- 'height': h,
111
- 'width': w,
112
- 'scale': s,
113
- 'rotation': r
114
- }
115
-
116
- if self.dataset == 'val' or self.dataset == 'test':
117
- return input, meta
118
- else:
119
- label_parsing = cv2.warpAffine(
120
- parsing_anno,
121
- trans,
122
- (int(self.crop_size[1]), int(self.crop_size[0])),
123
- flags=cv2.INTER_NEAREST,
124
- borderMode=cv2.BORDER_CONSTANT,
125
- borderValue=(255))
126
-
127
- label_parsing = torch.from_numpy(label_parsing)
128
-
129
- return input, label_parsing, meta
130
-
131
-
132
- class LIPDataValSet(data.Dataset):
133
- def __init__(self, root, dataset='val', crop_size=[473, 473], transform=None, flip=False):
134
- self.root = root
135
- self.crop_size = crop_size
136
- self.transform = transform
137
- self.flip = flip
138
- self.dataset = dataset
139
- self.root = root
140
- self.aspect_ratio = crop_size[1] * 1.0 / crop_size[0]
141
- self.crop_size = np.asarray(crop_size)
142
-
143
- list_path = os.path.join(self.root, self.dataset + '_id.txt')
144
- val_list = [i_id.strip() for i_id in open(list_path)]
145
-
146
- self.val_list = val_list
147
- self.number_samples = len(self.val_list)
148
-
149
- def __len__(self):
150
- return len(self.val_list)
151
-
152
- def _box2cs(self, box):
153
- x, y, w, h = box[:4]
154
- return self._xywh2cs(x, y, w, h)
155
-
156
- def _xywh2cs(self, x, y, w, h):
157
- center = np.zeros((2), dtype=np.float32)
158
- center[0] = x + w * 0.5
159
- center[1] = y + h * 0.5
160
- if w > self.aspect_ratio * h:
161
- h = w * 1.0 / self.aspect_ratio
162
- elif w < self.aspect_ratio * h:
163
- w = h * self.aspect_ratio
164
- scale = np.array([w * 1.0, h * 1.0], dtype=np.float32)
165
-
166
- return center, scale
167
-
168
- def __getitem__(self, index):
169
- val_item = self.val_list[index]
170
- # Load training image
171
- im_path = os.path.join(self.root, self.dataset + '_images', val_item + '.jpg')
172
- im = cv2.imread(im_path, cv2.IMREAD_COLOR)
173
- h, w, _ = im.shape
174
- # Get person center and scale
175
- person_center, s = self._box2cs([0, 0, w - 1, h - 1])
176
- r = 0
177
- trans = get_affine_transform(person_center, s, r, self.crop_size)
178
- input = cv2.warpAffine(
179
- im,
180
- trans,
181
- (int(self.crop_size[1]), int(self.crop_size[0])),
182
- flags=cv2.INTER_LINEAR,
183
- borderMode=cv2.BORDER_CONSTANT,
184
- borderValue=(0, 0, 0))
185
- input = self.transform(input)
186
- flip_input = input.flip(dims=[-1])
187
- if self.flip:
188
- batch_input_im = torch.stack([input, flip_input])
189
- else:
190
- batch_input_im = input
191
-
192
- meta = {
193
- 'name': val_item,
194
- 'center': person_center,
195
- 'height': h,
196
- 'width': w,
197
- 'scale': s,
198
- 'rotation': r
199
- }
200
-
201
- return batch_input_im, meta
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/datasets/simple_extractor_dataset.py DELETED
@@ -1,89 +0,0 @@
1
- #!/usr/bin/env python
2
- # -*- encoding: utf-8 -*-
3
-
4
- """
5
- @Author : Peike Li
6
- @Contact : [email protected]
7
- @File : dataset.py
8
- @Time : 8/30/19 9:12 PM
9
- @Desc : Dataset Definition
10
- @License : This source code is licensed under the license found in the
11
- LICENSE file in the root directory of this source tree.
12
- """
13
-
14
- import os
15
- import pdb
16
-
17
- import cv2
18
- import numpy as np
19
- from PIL import Image
20
- from torch.utils import data
21
- from utils.transforms import get_affine_transform
22
-
23
-
24
- class SimpleFolderDataset(data.Dataset):
25
- def __init__(self, root, input_size=[512, 512], transform=None):
26
- self.root = root
27
- self.input_size = input_size
28
- self.transform = transform
29
- self.aspect_ratio = input_size[1] * 1.0 / input_size[0]
30
- self.input_size = np.asarray(input_size)
31
- self.is_pil_image = False
32
- if isinstance(root, Image.Image):
33
- self.file_list = [root]
34
- self.is_pil_image = True
35
- elif os.path.isfile(root):
36
- self.file_list = [os.path.basename(root)]
37
- self.root = os.path.dirname(root)
38
- else:
39
- self.file_list = os.listdir(self.root)
40
-
41
- def __len__(self):
42
- return len(self.file_list)
43
-
44
- def _box2cs(self, box):
45
- x, y, w, h = box[:4]
46
- return self._xywh2cs(x, y, w, h)
47
-
48
- def _xywh2cs(self, x, y, w, h):
49
- center = np.zeros((2), dtype=np.float32)
50
- center[0] = x + w * 0.5
51
- center[1] = y + h * 0.5
52
- if w > self.aspect_ratio * h:
53
- h = w * 1.0 / self.aspect_ratio
54
- elif w < self.aspect_ratio * h:
55
- w = h * self.aspect_ratio
56
- scale = np.array([w, h], dtype=np.float32)
57
- return center, scale
58
-
59
- def __getitem__(self, index):
60
- if self.is_pil_image:
61
- img = np.asarray(self.file_list[index])[:, :, [2, 1, 0]]
62
- else:
63
- img_name = self.file_list[index]
64
- img_path = os.path.join(self.root, img_name)
65
- img = cv2.imread(img_path, cv2.IMREAD_COLOR)
66
- h, w, _ = img.shape
67
-
68
- # Get person center and scale
69
- person_center, s = self._box2cs([0, 0, w - 1, h - 1])
70
- r = 0
71
- trans = get_affine_transform(person_center, s, r, self.input_size)
72
- input = cv2.warpAffine(
73
- img,
74
- trans,
75
- (int(self.input_size[1]), int(self.input_size[0])),
76
- flags=cv2.INTER_LINEAR,
77
- borderMode=cv2.BORDER_CONSTANT,
78
- borderValue=(0, 0, 0))
79
-
80
- input = self.transform(input)
81
- meta = {
82
- 'center': person_center,
83
- 'height': h,
84
- 'width': w,
85
- 'scale': s,
86
- 'rotation': r
87
- }
88
-
89
- return input, meta
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/datasets/target_generation.py DELETED
@@ -1,40 +0,0 @@
1
- import torch
2
- from torch.nn import functional as F
3
-
4
-
5
- def generate_edge_tensor(label, edge_width=3):
6
- label = label.type(torch.cuda.FloatTensor)
7
- if len(label.shape) == 2:
8
- label = label.unsqueeze(0)
9
- n, h, w = label.shape
10
- edge = torch.zeros(label.shape, dtype=torch.float).cuda()
11
- # right
12
- edge_right = edge[:, 1:h, :]
13
- edge_right[(label[:, 1:h, :] != label[:, :h - 1, :]) & (label[:, 1:h, :] != 255)
14
- & (label[:, :h - 1, :] != 255)] = 1
15
-
16
- # up
17
- edge_up = edge[:, :, :w - 1]
18
- edge_up[(label[:, :, :w - 1] != label[:, :, 1:w])
19
- & (label[:, :, :w - 1] != 255)
20
- & (label[:, :, 1:w] != 255)] = 1
21
-
22
- # upright
23
- edge_upright = edge[:, :h - 1, :w - 1]
24
- edge_upright[(label[:, :h - 1, :w - 1] != label[:, 1:h, 1:w])
25
- & (label[:, :h - 1, :w - 1] != 255)
26
- & (label[:, 1:h, 1:w] != 255)] = 1
27
-
28
- # bottomright
29
- edge_bottomright = edge[:, :h - 1, 1:w]
30
- edge_bottomright[(label[:, :h - 1, 1:w] != label[:, 1:h, :w - 1])
31
- & (label[:, :h - 1, 1:w] != 255)
32
- & (label[:, 1:h, :w - 1] != 255)] = 1
33
-
34
- kernel = torch.ones((1, 1, edge_width, edge_width), dtype=torch.float).cuda()
35
- with torch.no_grad():
36
- edge = edge.unsqueeze(1)
37
- edge = F.conv2d(edge, kernel, stride=1, padding=1)
38
- edge[edge!=0] = 1
39
- edge = edge.squeeze()
40
- return edge
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/__pycache__/pycococreatortools.cpython-37.pyc DELETED
Binary file (3.6 kB)
 
preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/human_to_coco.py DELETED
@@ -1,166 +0,0 @@
1
- import argparse
2
- import datetime
3
- import json
4
- import os
5
- from PIL import Image
6
- import numpy as np
7
-
8
- import pycococreatortools
9
-
10
-
11
- def get_arguments():
12
- parser = argparse.ArgumentParser(description="transform mask annotation to coco annotation")
13
- parser.add_argument("--dataset", type=str, default='CIHP', help="name of dataset (CIHP, MHPv2 or VIP)")
14
- parser.add_argument("--json_save_dir", type=str, default='../data/msrcnn_finetune_annotations',
15
- help="path to save coco-style annotation json file")
16
- parser.add_argument("--use_val", type=bool, default=False,
17
- help="use train+val set for finetuning or not")
18
- parser.add_argument("--train_img_dir", type=str, default='../data/instance-level_human_parsing/Training/Images',
19
- help="train image path")
20
- parser.add_argument("--train_anno_dir", type=str,
21
- default='../data/instance-level_human_parsing/Training/Human_ids',
22
- help="train human mask path")
23
- parser.add_argument("--val_img_dir", type=str, default='../data/instance-level_human_parsing/Validation/Images',
24
- help="val image path")
25
- parser.add_argument("--val_anno_dir", type=str,
26
- default='../data/instance-level_human_parsing/Validation/Human_ids',
27
- help="val human mask path")
28
- return parser.parse_args()
29
-
30
-
31
- def main(args):
32
- INFO = {
33
- "description": args.split_name + " Dataset",
34
- "url": "",
35
- "version": "",
36
- "year": 2019,
37
- "contributor": "xyq",
38
- "date_created": datetime.datetime.utcnow().isoformat(' ')
39
- }
40
-
41
- LICENSES = [
42
- {
43
- "id": 1,
44
- "name": "",
45
- "url": ""
46
- }
47
- ]
48
-
49
- CATEGORIES = [
50
- {
51
- 'id': 1,
52
- 'name': 'person',
53
- 'supercategory': 'person',
54
- },
55
- ]
56
-
57
- coco_output = {
58
- "info": INFO,
59
- "licenses": LICENSES,
60
- "categories": CATEGORIES,
61
- "images": [],
62
- "annotations": []
63
- }
64
-
65
- image_id = 1
66
- segmentation_id = 1
67
-
68
- for image_name in os.listdir(args.train_img_dir):
69
- image = Image.open(os.path.join(args.train_img_dir, image_name))
70
- image_info = pycococreatortools.create_image_info(
71
- image_id, image_name, image.size
72
- )
73
- coco_output["images"].append(image_info)
74
-
75
- human_mask_name = os.path.splitext(image_name)[0] + '.png'
76
- human_mask = np.asarray(Image.open(os.path.join(args.train_anno_dir, human_mask_name)))
77
- human_gt_labels = np.unique(human_mask)
78
-
79
- for i in range(1, len(human_gt_labels)):
80
- category_info = {'id': 1, 'is_crowd': 0}
81
- binary_mask = np.uint8(human_mask == i)
82
- annotation_info = pycococreatortools.create_annotation_info(
83
- segmentation_id, image_id, category_info, binary_mask,
84
- image.size, tolerance=10
85
- )
86
- if annotation_info is not None:
87
- coco_output["annotations"].append(annotation_info)
88
-
89
- segmentation_id += 1
90
- image_id += 1
91
-
92
- if not os.path.exists(args.json_save_dir):
93
- os.makedirs(args.json_save_dir)
94
- if not args.use_val:
95
- with open('{}/{}_train.json'.format(args.json_save_dir, args.split_name), 'w') as output_json_file:
96
- json.dump(coco_output, output_json_file)
97
- else:
98
- for image_name in os.listdir(args.val_img_dir):
99
- image = Image.open(os.path.join(args.val_img_dir, image_name))
100
- image_info = pycococreatortools.create_image_info(
101
- image_id, image_name, image.size
102
- )
103
- coco_output["images"].append(image_info)
104
-
105
- human_mask_name = os.path.splitext(image_name)[0] + '.png'
106
- human_mask = np.asarray(Image.open(os.path.join(args.val_anno_dir, human_mask_name)))
107
- human_gt_labels = np.unique(human_mask)
108
-
109
- for i in range(1, len(human_gt_labels)):
110
- category_info = {'id': 1, 'is_crowd': 0}
111
- binary_mask = np.uint8(human_mask == i)
112
- annotation_info = pycococreatortools.create_annotation_info(
113
- segmentation_id, image_id, category_info, binary_mask,
114
- image.size, tolerance=10
115
- )
116
- if annotation_info is not None:
117
- coco_output["annotations"].append(annotation_info)
118
-
119
- segmentation_id += 1
120
- image_id += 1
121
-
122
- with open('{}/{}_trainval.json'.format(args.json_save_dir, args.split_name), 'w') as output_json_file:
123
- json.dump(coco_output, output_json_file)
124
-
125
- coco_output_val = {
126
- "info": INFO,
127
- "licenses": LICENSES,
128
- "categories": CATEGORIES,
129
- "images": [],
130
- "annotations": []
131
- }
132
-
133
- image_id_val = 1
134
- segmentation_id_val = 1
135
-
136
- for image_name in os.listdir(args.val_img_dir):
137
- image = Image.open(os.path.join(args.val_img_dir, image_name))
138
- image_info = pycococreatortools.create_image_info(
139
- image_id_val, image_name, image.size
140
- )
141
- coco_output_val["images"].append(image_info)
142
-
143
- human_mask_name = os.path.splitext(image_name)[0] + '.png'
144
- human_mask = np.asarray(Image.open(os.path.join(args.val_anno_dir, human_mask_name)))
145
- human_gt_labels = np.unique(human_mask)
146
-
147
- for i in range(1, len(human_gt_labels)):
148
- category_info = {'id': 1, 'is_crowd': 0}
149
- binary_mask = np.uint8(human_mask == i)
150
- annotation_info = pycococreatortools.create_annotation_info(
151
- segmentation_id_val, image_id_val, category_info, binary_mask,
152
- image.size, tolerance=10
153
- )
154
- if annotation_info is not None:
155
- coco_output_val["annotations"].append(annotation_info)
156
-
157
- segmentation_id_val += 1
158
- image_id_val += 1
159
-
160
- with open('{}/{}_val.json'.format(args.json_save_dir, args.split_name), 'w') as output_json_file_val:
161
- json.dump(coco_output_val, output_json_file_val)
162
-
163
-
164
- if __name__ == "__main__":
165
- args = get_arguments()
166
- main(args)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/pycococreatortools.py DELETED
@@ -1,114 +0,0 @@
1
- import re
2
- import datetime
3
- import numpy as np
4
- from itertools import groupby
5
- from skimage import measure
6
- from PIL import Image
7
- from pycocotools import mask
8
-
9
- convert = lambda text: int(text) if text.isdigit() else text.lower()
10
- natrual_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]
11
-
12
-
13
- def resize_binary_mask(array, new_size):
14
- image = Image.fromarray(array.astype(np.uint8) * 255)
15
- image = image.resize(new_size)
16
- return np.asarray(image).astype(np.bool_)
17
-
18
-
19
- def close_contour(contour):
20
- if not np.array_equal(contour[0], contour[-1]):
21
- contour = np.vstack((contour, contour[0]))
22
- return contour
23
-
24
-
25
- def binary_mask_to_rle(binary_mask):
26
- rle = {'counts': [], 'size': list(binary_mask.shape)}
27
- counts = rle.get('counts')
28
- for i, (value, elements) in enumerate(groupby(binary_mask.ravel(order='F'))):
29
- if i == 0 and value == 1:
30
- counts.append(0)
31
- counts.append(len(list(elements)))
32
-
33
- return rle
34
-
35
-
36
- def binary_mask_to_polygon(binary_mask, tolerance=0):
37
- """Converts a binary mask to COCO polygon representation
38
- Args:
39
- binary_mask: a 2D binary numpy array where '1's represent the object
40
- tolerance: Maximum distance from original points of polygon to approximated
41
- polygonal chain. If tolerance is 0, the original coordinate array is returned.
42
- """
43
- polygons = []
44
- # pad mask to close contours of shapes which start and end at an edge
45
- padded_binary_mask = np.pad(binary_mask, pad_width=1, mode='constant', constant_values=0)
46
- contours = measure.find_contours(padded_binary_mask, 0.5)
47
- contours = np.subtract(contours, 1)
48
- for contour in contours:
49
- contour = close_contour(contour)
50
- contour = measure.approximate_polygon(contour, tolerance)
51
- if len(contour) < 3:
52
- continue
53
- contour = np.flip(contour, axis=1)
54
- segmentation = contour.ravel().tolist()
55
- # after padding and subtracting 1 we may get -0.5 points in our segmentation
56
- segmentation = [0 if i < 0 else i for i in segmentation]
57
- polygons.append(segmentation)
58
-
59
- return polygons
60
-
61
-
62
- def create_image_info(image_id, file_name, image_size,
63
- date_captured=datetime.datetime.utcnow().isoformat(' '),
64
- license_id=1, coco_url="", flickr_url=""):
65
- image_info = {
66
- "id": image_id,
67
- "file_name": file_name,
68
- "width": image_size[0],
69
- "height": image_size[1],
70
- "date_captured": date_captured,
71
- "license": license_id,
72
- "coco_url": coco_url,
73
- "flickr_url": flickr_url
74
- }
75
-
76
- return image_info
77
-
78
-
79
- def create_annotation_info(annotation_id, image_id, category_info, binary_mask,
80
- image_size=None, tolerance=2, bounding_box=None):
81
- if image_size is not None:
82
- binary_mask = resize_binary_mask(binary_mask, image_size)
83
-
84
- binary_mask_encoded = mask.encode(np.asfortranarray(binary_mask.astype(np.uint8)))
85
-
86
- area = mask.area(binary_mask_encoded)
87
- if area < 1:
88
- return None
89
-
90
- if bounding_box is None:
91
- bounding_box = mask.toBbox(binary_mask_encoded)
92
-
93
- if category_info["is_crowd"]:
94
- is_crowd = 1
95
- segmentation = binary_mask_to_rle(binary_mask)
96
- else:
97
- is_crowd = 0
98
- segmentation = binary_mask_to_polygon(binary_mask, tolerance)
99
- if not segmentation:
100
- return None
101
-
102
- annotation_info = {
103
- "id": annotation_id,
104
- "image_id": image_id,
105
- "category_id": category_info["id"],
106
- "iscrowd": is_crowd,
107
- "area": area.tolist(),
108
- "bbox": bounding_box.tolist(),
109
- "segmentation": segmentation,
110
- "width": binary_mask.shape[1],
111
- "height": binary_mask.shape[0],
112
- }
113
-
114
- return annotation_info
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/test_human2coco_format.py DELETED
@@ -1,74 +0,0 @@
1
- import argparse
2
- import datetime
3
- import json
4
- import os
5
- from PIL import Image
6
-
7
- import pycococreatortools
8
-
9
-
10
- def get_arguments():
11
- parser = argparse.ArgumentParser(description="transform mask annotation to coco annotation")
12
- parser.add_argument("--dataset", type=str, default='CIHP', help="name of dataset (CIHP, MHPv2 or VIP)")
13
- parser.add_argument("--json_save_dir", type=str, default='../data/CIHP/annotations',
14
- help="path to save coco-style annotation json file")
15
- parser.add_argument("--test_img_dir", type=str, default='../data/CIHP/Testing/Images',
16
- help="test image path")
17
- return parser.parse_args()
18
-
19
- args = get_arguments()
20
-
21
- INFO = {
22
- "description": args.dataset + "Dataset",
23
- "url": "",
24
- "version": "",
25
- "year": 2020,
26
- "contributor": "yunqiuxu",
27
- "date_created": datetime.datetime.utcnow().isoformat(' ')
28
- }
29
-
30
- LICENSES = [
31
- {
32
- "id": 1,
33
- "name": "",
34
- "url": ""
35
- }
36
- ]
37
-
38
- CATEGORIES = [
39
- {
40
- 'id': 1,
41
- 'name': 'person',
42
- 'supercategory': 'person',
43
- },
44
- ]
45
-
46
-
47
- def main(args):
48
- coco_output = {
49
- "info": INFO,
50
- "licenses": LICENSES,
51
- "categories": CATEGORIES,
52
- "images": [],
53
- "annotations": []
54
- }
55
-
56
- image_id = 1
57
-
58
- for image_name in os.listdir(args.test_img_dir):
59
- image = Image.open(os.path.join(args.test_img_dir, image_name))
60
- image_info = pycococreatortools.create_image_info(
61
- image_id, image_name, image.size
62
- )
63
- coco_output["images"].append(image_info)
64
- image_id += 1
65
-
66
- if not os.path.exists(os.path.join(args.json_save_dir)):
67
- os.mkdir(os.path.join(args.json_save_dir))
68
-
69
- with open('{}/{}.json'.format(args.json_save_dir, args.dataset), 'w') as output_json_file:
70
- json.dump(coco_output, output_json_file)
71
-
72
-
73
- if __name__ == "__main__":
74
- main(args)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/.circleci/config.yml DELETED
@@ -1,179 +0,0 @@
1
- # Python CircleCI 2.0 configuration file
2
- #
3
- # Check https://circleci.com/docs/2.0/language-python/ for more details
4
- #
5
- version: 2
6
-
7
- # -------------------------------------------------------------------------------------
8
- # Environments to run the jobs in
9
- # -------------------------------------------------------------------------------------
10
- cpu: &cpu
11
- docker:
12
- - image: circleci/python:3.6.8-stretch
13
- resource_class: medium
14
-
15
- gpu: &gpu
16
- machine:
17
- image: ubuntu-1604:201903-01
18
- docker_layer_caching: true
19
- resource_class: gpu.small
20
-
21
- # -------------------------------------------------------------------------------------
22
- # Re-usable commands
23
- # -------------------------------------------------------------------------------------
24
- install_python: &install_python
25
- - run:
26
- name: Install Python
27
- working_directory: ~/
28
- command: |
29
- pyenv install 3.6.1
30
- pyenv global 3.6.1
31
-
32
- setup_venv: &setup_venv
33
- - run:
34
- name: Setup Virtual Env
35
- working_directory: ~/
36
- command: |
37
- python -m venv ~/venv
38
- echo ". ~/venv/bin/activate" >> $BASH_ENV
39
- . ~/venv/bin/activate
40
- python --version
41
- which python
42
- which pip
43
- pip install --upgrade pip
44
-
45
- install_dep: &install_dep
46
- - run:
47
- name: Install Dependencies
48
- command: |
49
- pip install --progress-bar off -U 'git+https://github.com/facebookresearch/fvcore'
50
- pip install --progress-bar off cython opencv-python
51
- pip install --progress-bar off 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
52
- pip install --progress-bar off torch torchvision
53
-
54
- install_detectron2: &install_detectron2
55
- - run:
56
- name: Install Detectron2
57
- command: |
58
- gcc --version
59
- pip install -U --progress-bar off -e .[dev]
60
- python -m detectron2.utils.collect_env
61
-
62
- install_nvidia_driver: &install_nvidia_driver
63
- - run:
64
- name: Install nvidia driver
65
- working_directory: ~/
66
- command: |
67
- wget -q 'https://s3.amazonaws.com/ossci-linux/nvidia_driver/NVIDIA-Linux-x86_64-430.40.run'
68
- sudo /bin/bash ./NVIDIA-Linux-x86_64-430.40.run -s --no-drm
69
- nvidia-smi
70
-
71
- run_unittests: &run_unittests
72
- - run:
73
- name: Run Unit Tests
74
- command: |
75
- python -m unittest discover -v -s tests
76
-
77
- # -------------------------------------------------------------------------------------
78
- # Jobs to run
79
- # -------------------------------------------------------------------------------------
80
- jobs:
81
- cpu_tests:
82
- <<: *cpu
83
-
84
- working_directory: ~/detectron2
85
-
86
- steps:
87
- - checkout
88
- - <<: *setup_venv
89
-
90
- # Cache the venv directory that contains dependencies
91
- - restore_cache:
92
- keys:
93
- - cache-key-{{ .Branch }}-ID-20200425
94
-
95
- - <<: *install_dep
96
-
97
- - save_cache:
98
- paths:
99
- - ~/venv
100
- key: cache-key-{{ .Branch }}-ID-20200425
101
-
102
- - <<: *install_detectron2
103
-
104
- - run:
105
- name: isort
106
- command: |
107
- isort -c -sp .
108
- - run:
109
- name: black
110
- command: |
111
- black --check -l 100 .
112
- - run:
113
- name: flake8
114
- command: |
115
- flake8 .
116
-
117
- - <<: *run_unittests
118
-
119
- gpu_tests:
120
- <<: *gpu
121
-
122
- working_directory: ~/detectron2
123
-
124
- steps:
125
- - checkout
126
- - <<: *install_nvidia_driver
127
-
128
- - run:
129
- name: Install nvidia-docker
130
- working_directory: ~/
131
- command: |
132
- curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
133
- distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
134
- curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | \
135
- sudo tee /etc/apt/sources.list.d/nvidia-docker.list
136
- sudo apt-get update && sudo apt-get install -y nvidia-docker2
137
- # reload the docker daemon configuration
138
- sudo pkill -SIGHUP dockerd
139
-
140
- - run:
141
- name: Launch docker
142
- working_directory: ~/detectron2/docker
143
- command: |
144
- nvidia-docker build -t detectron2:v0 -f Dockerfile-circleci .
145
- nvidia-docker run -itd --name d2 detectron2:v0
146
- docker exec -it d2 nvidia-smi
147
-
148
- - run:
149
- name: Build Detectron2
150
- command: |
151
- docker exec -it d2 pip install 'git+https://github.com/facebookresearch/fvcore'
152
- docker cp ~/detectron2 d2:/detectron2
153
- # This will build d2 for the target GPU arch only
154
- docker exec -it d2 pip install -e /detectron2
155
- docker exec -it d2 python3 -m detectron2.utils.collect_env
156
- docker exec -it d2 python3 -c 'import torch; assert(torch.cuda.is_available())'
157
-
158
- - run:
159
- name: Run Unit Tests
160
- command: |
161
- docker exec -e CIRCLECI=true -it d2 python3 -m unittest discover -v -s /detectron2/tests
162
-
163
- workflows:
164
- version: 2
165
- regular_test:
166
- jobs:
167
- - cpu_tests
168
- - gpu_tests
169
-
170
- #nightly_test:
171
- #jobs:
172
- #- gpu_tests
173
- #triggers:
174
- #- schedule:
175
- #cron: "0 0 * * *"
176
- #filters:
177
- #branches:
178
- #only:
179
- #- master
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/.clang-format DELETED
@@ -1,85 +0,0 @@
1
- AccessModifierOffset: -1
2
- AlignAfterOpenBracket: AlwaysBreak
3
- AlignConsecutiveAssignments: false
4
- AlignConsecutiveDeclarations: false
5
- AlignEscapedNewlinesLeft: true
6
- AlignOperands: false
7
- AlignTrailingComments: false
8
- AllowAllParametersOfDeclarationOnNextLine: false
9
- AllowShortBlocksOnASingleLine: false
10
- AllowShortCaseLabelsOnASingleLine: false
11
- AllowShortFunctionsOnASingleLine: Empty
12
- AllowShortIfStatementsOnASingleLine: false
13
- AllowShortLoopsOnASingleLine: false
14
- AlwaysBreakAfterReturnType: None
15
- AlwaysBreakBeforeMultilineStrings: true
16
- AlwaysBreakTemplateDeclarations: true
17
- BinPackArguments: false
18
- BinPackParameters: false
19
- BraceWrapping:
20
- AfterClass: false
21
- AfterControlStatement: false
22
- AfterEnum: false
23
- AfterFunction: false
24
- AfterNamespace: false
25
- AfterObjCDeclaration: false
26
- AfterStruct: false
27
- AfterUnion: false
28
- BeforeCatch: false
29
- BeforeElse: false
30
- IndentBraces: false
31
- BreakBeforeBinaryOperators: None
32
- BreakBeforeBraces: Attach
33
- BreakBeforeTernaryOperators: true
34
- BreakConstructorInitializersBeforeComma: false
35
- BreakAfterJavaFieldAnnotations: false
36
- BreakStringLiterals: false
37
- ColumnLimit: 80
38
- CommentPragmas: '^ IWYU pragma:'
39
- ConstructorInitializerAllOnOneLineOrOnePerLine: true
40
- ConstructorInitializerIndentWidth: 4
41
- ContinuationIndentWidth: 4
42
- Cpp11BracedListStyle: true
43
- DerivePointerAlignment: false
44
- DisableFormat: false
45
- ForEachMacros: [ FOR_EACH, FOR_EACH_ENUMERATE, FOR_EACH_KV, FOR_EACH_R, FOR_EACH_RANGE, ]
46
- IncludeCategories:
47
- - Regex: '^<.*\.h(pp)?>'
48
- Priority: 1
49
- - Regex: '^<.*'
50
- Priority: 2
51
- - Regex: '.*'
52
- Priority: 3
53
- IndentCaseLabels: true
54
- IndentWidth: 2
55
- IndentWrappedFunctionNames: false
56
- KeepEmptyLinesAtTheStartOfBlocks: false
57
- MacroBlockBegin: ''
58
- MacroBlockEnd: ''
59
- MaxEmptyLinesToKeep: 1
60
- NamespaceIndentation: None
61
- ObjCBlockIndentWidth: 2
62
- ObjCSpaceAfterProperty: false
63
- ObjCSpaceBeforeProtocolList: false
64
- PenaltyBreakBeforeFirstCallParameter: 1
65
- PenaltyBreakComment: 300
66
- PenaltyBreakFirstLessLess: 120
67
- PenaltyBreakString: 1000
68
- PenaltyExcessCharacter: 1000000
69
- PenaltyReturnTypeOnItsOwnLine: 200
70
- PointerAlignment: Left
71
- ReflowComments: true
72
- SortIncludes: true
73
- SpaceAfterCStyleCast: false
74
- SpaceBeforeAssignmentOperators: true
75
- SpaceBeforeParens: ControlStatements
76
- SpaceInEmptyParentheses: false
77
- SpacesBeforeTrailingComments: 1
78
- SpacesInAngles: false
79
- SpacesInContainerLiterals: true
80
- SpacesInCStyleCastParentheses: false
81
- SpacesInParentheses: false
82
- SpacesInSquareBrackets: false
83
- Standard: Cpp11
84
- TabWidth: 8
85
- UseTab: Never
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/.flake8 DELETED
@@ -1,9 +0,0 @@
1
- # This is an example .flake8 config, used when developing *Black* itself.
2
- # Keep in sync with setup.cfg which is used for source packages.
3
-
4
- [flake8]
5
- ignore = W503, E203, E221, C901, C408, E741
6
- max-line-length = 100
7
- max-complexity = 18
8
- select = B,C,E,F,W,T4,B9
9
- exclude = build,__init__.py
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/.github/CODE_OF_CONDUCT.md DELETED
@@ -1,5 +0,0 @@
1
- # Code of Conduct
2
-
3
- Facebook has adopted a Code of Conduct that we expect project participants to adhere to.
4
- Please read the [full text](https://code.fb.com/codeofconduct/)
5
- so that you can understand what actions will and will not be tolerated.
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/.github/CONTRIBUTING.md DELETED
@@ -1,49 +0,0 @@
1
- # Contributing to detectron2
2
-
3
- ## Issues
4
- We use GitHub issues to track public bugs and questions.
5
- Please make sure to follow one of the
6
- [issue templates](https://github.com/facebookresearch/detectron2/issues/new/choose)
7
- when reporting any issues.
8
-
9
- Facebook has a [bounty program](https://www.facebook.com/whitehat/) for the safe
10
- disclosure of security bugs. In those cases, please go through the process
11
- outlined on that page and do not file a public issue.
12
-
13
- ## Pull Requests
14
- We actively welcome your pull requests.
15
-
16
- However, if you're adding any significant features (e.g. > 50 lines), please
17
- make sure to have a corresponding issue to discuss your motivation and proposals,
18
- before sending a PR. We do not always accept new features, and we take the following
19
- factors into consideration:
20
-
21
- 1. Whether the same feature can be achieved without modifying detectron2.
22
- Detectron2 is designed so that you can implement many extensions from the outside, e.g.
23
- those in [projects](https://github.com/facebookresearch/detectron2/tree/master/projects).
24
- If some part is not as extensible, you can also bring up the issue to make it more extensible.
25
- 2. Whether the feature is potentially useful to a large audience, or only to a small portion of users.
26
- 3. Whether the proposed solution has a good design / interface.
27
- 4. Whether the proposed solution adds extra mental/practical overhead to users who don't
28
- need such feature.
29
- 5. Whether the proposed solution breaks existing APIs.
30
-
31
- When sending a PR, please do:
32
-
33
- 1. If a PR contains multiple orthogonal changes, split it to several PRs.
34
- 2. If you've added code that should be tested, add tests.
35
- 3. For PRs that need experiments (e.g. adding a new model or new methods),
36
- you don't need to update model zoo, but do provide experiment results in the description of the PR.
37
- 4. If APIs are changed, update the documentation.
38
- 5. Make sure your code lints with `./dev/linter.sh`.
39
-
40
-
41
- ## Contributor License Agreement ("CLA")
42
- In order to accept your pull request, we need you to submit a CLA. You only need
43
- to do this once to work on any of Facebook's open source projects.
44
-
45
- Complete your CLA here: <https://code.facebook.com/cla>
46
-
47
- ## License
48
- By contributing to detectron2, you agree that your contributions will be licensed
49
- under the LICENSE file in the root directory of this source tree.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/.github/Detectron2-Logo-Horz.svg DELETED
preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE.md DELETED
@@ -1,5 +0,0 @@
1
-
2
- Please select an issue template from
3
- https://github.com/facebookresearch/detectron2/issues/new/choose .
4
-
5
- Otherwise your issue will be closed.
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/bugs.md DELETED
@@ -1,36 +0,0 @@
1
- ---
2
- name: "🐛 Bugs"
3
- about: Report bugs in detectron2
4
- title: Please read & provide the following
5
-
6
- ---
7
-
8
- ## Instructions To Reproduce the 🐛 Bug:
9
-
10
- 1. what changes you made (`git diff`) or what code you wrote
11
- ```
12
- <put diff or code here>
13
- ```
14
- 2. what exact command you run:
15
- 3. what you observed (including __full logs__):
16
- ```
17
- <put logs here>
18
- ```
19
- 4. please simplify the steps as much as possible so they do not require additional resources to
20
- run, such as a private dataset.
21
-
22
- ## Expected behavior:
23
-
24
- If there are no obvious error in "what you observed" provided above,
25
- please tell us the expected behavior.
26
-
27
- ## Environment:
28
-
29
- Provide your environment information using the following command:
30
- ```
31
- wget -nc -q https://github.com/facebookresearch/detectron2/raw/master/detectron2/utils/collect_env.py && python collect_env.py
32
- ```
33
-
34
- If your issue looks like an installation issue / environment issue,
35
- please first try to solve it yourself with the instructions in
36
- https://detectron2.readthedocs.io/tutorials/install.html#common-installation-issues
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/config.yml DELETED
@@ -1,9 +0,0 @@
1
- # require an issue template to be chosen
2
- blank_issues_enabled: false
3
-
4
- # Unexpected behaviors & bugs are split to two templates.
5
- # When they are one template, users think "it's not a bug" and don't choose the template.
6
- #
7
- # But the file name is still "unexpected-problems-bugs.md" so that old references
8
- # to this issue template still works.
9
- # It's ok since this template should be a superset of "bugs.md" (unexpected behaviors is a superset of bugs)
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/feature-request.md DELETED
@@ -1,31 +0,0 @@
1
- ---
2
- name: "\U0001F680Feature Request"
3
- about: Submit a proposal/request for a new detectron2 feature
4
-
5
- ---
6
-
7
- ## 🚀 Feature
8
- A clear and concise description of the feature proposal.
9
-
10
-
11
- ## Motivation & Examples
12
-
13
- Tell us why the feature is useful.
14
-
15
- Describe what the feature would look like, if it is implemented.
16
- Best demonstrated using **code examples** in addition to words.
17
-
18
- ## Note
19
-
20
- We only consider adding new features if they are relevant to many users.
21
-
22
- If you request implementation of research papers --
23
- we only consider papers that have enough significance and prevalance in the object detection field.
24
-
25
- We do not take requests for most projects in the `projects/` directory,
26
- because they are research code release that is mainly for other researchers to reproduce results.
27
-
28
- Instead of adding features inside detectron2,
29
- you can implement many features by [extending detectron2](https://detectron2.readthedocs.io/tutorials/extend.html).
30
- The [projects/](https://github.com/facebookresearch/detectron2/tree/master/projects/) directory contains many of such examples.
31
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/questions-help-support.md DELETED
@@ -1,26 +0,0 @@
1
- ---
2
- name: "❓How to do something?"
3
- about: How to do something using detectron2? What does an API do?
4
-
5
- ---
6
-
7
- ## ❓ How to do something using detectron2
8
-
9
- Describe what you want to do, including:
10
- 1. what inputs you will provide, if any:
11
- 2. what outputs you are expecting:
12
-
13
- ## ❓ What does an API do and how to use it?
14
- Please link to which API or documentation you're asking about from
15
- https://detectron2.readthedocs.io/
16
-
17
-
18
- NOTE:
19
-
20
- 1. Only general answers are provided.
21
- If you want to ask about "why X did not work", please use the
22
- [Unexpected behaviors](https://github.com/facebookresearch/detectron2/issues/new/choose) issue template.
23
-
24
- 2. About how to implement new models / new dataloader / new training logic, etc., check documentation first.
25
-
26
- 3. We do not answer general machine learning / computer vision questions that are not specific to detectron2, such as how a model works, how to improve your training/make it converge, or what algorithm/methods can be used to achieve X.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/unexpected-problems-bugs.md DELETED
@@ -1,45 +0,0 @@
1
- ---
2
- name: "Unexpected behaviors"
3
- about: Run into unexpected behaviors when using detectron2
4
- title: Please read & provide the following
5
-
6
- ---
7
-
8
- If you do not know the root cause of the problem, and wish someone to help you, please
9
- post according to this template:
10
-
11
- ## Instructions To Reproduce the Issue:
12
-
13
- 1. what changes you made (`git diff`) or what code you wrote
14
- ```
15
- <put diff or code here>
16
- ```
17
- 2. what exact command you run:
18
- 3. what you observed (including __full logs__):
19
- ```
20
- <put logs here>
21
- ```
22
- 4. please simplify the steps as much as possible so they do not require additional resources to
23
- run, such as a private dataset.
24
-
25
- ## Expected behavior:
26
-
27
- If there are no obvious error in "what you observed" provided above,
28
- please tell us the expected behavior.
29
-
30
- If you expect the model to converge / work better, note that we do not give suggestions
31
- on how to train a new model.
32
- Only in one of the two conditions we will help with it:
33
- (1) You're unable to reproduce the results in detectron2 model zoo.
34
- (2) It indicates a detectron2 bug.
35
-
36
- ## Environment:
37
-
38
- Provide your environment information using the following command:
39
- ```
40
- wget -nc -q https://github.com/facebookresearch/detectron2/raw/master/detectron2/utils/collect_env.py && python collect_env.py
41
- ```
42
-
43
- If your issue looks like an installation issue / environment issue,
44
- please first try to solve it yourself with the instructions in
45
- https://detectron2.readthedocs.io/tutorials/install.html#common-installation-issues
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/.github/pull_request_template.md DELETED
@@ -1,9 +0,0 @@
1
- Thanks for your contribution!
2
-
3
- If you're sending a large PR (e.g., >50 lines),
4
- please open an issue first about the feature / bug, and indicate how you want to contribute.
5
-
6
- Before submitting a PR, please run `dev/linter.sh` to lint the code.
7
-
8
- See https://detectron2.readthedocs.io/notes/contributing.html#pull-requests
9
- about how we handle PRs.
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/.gitignore DELETED
@@ -1,46 +0,0 @@
1
- # output dir
2
- output
3
- instant_test_output
4
- inference_test_output
5
-
6
-
7
- *.jpg
8
- *.png
9
- *.txt
10
- *.json
11
- *.diff
12
-
13
- # compilation and distribution
14
- __pycache__
15
- _ext
16
- *.pyc
17
- *.so
18
- detectron2.egg-info/
19
- build/
20
- dist/
21
- wheels/
22
-
23
- # pytorch/python/numpy formats
24
- *.pth
25
- *.pkl
26
- *.npy
27
-
28
- # ipython/jupyter notebooks
29
- *.ipynb
30
- **/.ipynb_checkpoints/
31
-
32
- # Editor temporaries
33
- *.swn
34
- *.swo
35
- *.swp
36
- *~
37
-
38
- # editor settings
39
- .idea
40
- .vscode
41
-
42
- # project dirs
43
- /detectron2/model_zoo/configs
44
- /datasets
45
- /projects/*/datasets
46
- /models
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/GETTING_STARTED.md DELETED
@@ -1,79 +0,0 @@
1
- ## Getting Started with Detectron2
2
-
3
- This document provides a brief intro of the usage of builtin command-line tools in detectron2.
4
-
5
- For a tutorial that involves actual coding with the API,
6
- see our [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5)
7
- which covers how to run inference with an
8
- existing model, and how to train a builtin model on a custom dataset.
9
-
10
- For more advanced tutorials, refer to our [documentation](https://detectron2.readthedocs.io/tutorials/extend.html).
11
-
12
-
13
- ### Inference Demo with Pre-trained Models
14
-
15
- 1. Pick a model and its config file from
16
- [model zoo](MODEL_ZOO.md),
17
- for example, `mask_rcnn_R_50_FPN_3x.yaml`.
18
- 2. We provide `demo.py` that is able to run builtin standard models. Run it with:
19
- ```
20
- cd demo/
21
- python demo.py --config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml \
22
- --input input1.jpg input2.jpg \
23
- [--other-options]
24
- --opts MODEL.WEIGHTS detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl
25
- ```
26
- The configs are made for training, therefore we need to specify `MODEL.WEIGHTS` to a model from model zoo for evaluation.
27
- This command will run the inference and show visualizations in an OpenCV window.
28
-
29
- For details of the command line arguments, see `demo.py -h` or look at its source code
30
- to understand its behavior. Some common arguments are:
31
- * To run __on your webcam__, replace `--input files` with `--webcam`.
32
- * To run __on a video__, replace `--input files` with `--video-input video.mp4`.
33
- * To run __on cpu__, add `MODEL.DEVICE cpu` after `--opts`.
34
- * To save outputs to a directory (for images) or a file (for webcam or video), use `--output`.
35
-
36
-
37
- ### Training & Evaluation in Command Line
38
-
39
- We provide a script in "tools/{,plain_}train_net.py", that is made to train
40
- all the configs provided in detectron2.
41
- You may want to use it as a reference to write your own training script.
42
-
43
- To train a model with "train_net.py", first
44
- setup the corresponding datasets following
45
- [datasets/README.md](./datasets/README.md),
46
- then run:
47
- ```
48
- cd tools/
49
- ./train_net.py --num-gpus 8 \
50
- --config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
51
- ```
52
-
53
- The configs are made for 8-GPU training.
54
- To train on 1 GPU, you may need to [change some parameters](https://arxiv.org/abs/1706.02677), e.g.:
55
- ```
56
- ./train_net.py \
57
- --config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \
58
- --num-gpus 1 SOLVER.IMS_PER_BATCH 2 SOLVER.BASE_LR 0.0025
59
- ```
60
-
61
- For most models, CPU training is not supported.
62
-
63
- To evaluate a model's performance, use
64
- ```
65
- ./train_net.py \
66
- --config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \
67
- --eval-only MODEL.WEIGHTS /path/to/checkpoint_file
68
- ```
69
- For more options, see `./train_net.py -h`.
70
-
71
- ### Use Detectron2 APIs in Your Code
72
-
73
- See our [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5)
74
- to learn how to use detectron2 APIs to:
75
- 1. run inference with an existing model
76
- 2. train a builtin model on a custom dataset
77
-
78
- See [detectron2/projects](https://github.com/facebookresearch/detectron2/tree/master/projects)
79
- for more ways to build your project on detectron2.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/INSTALL.md DELETED
@@ -1,184 +0,0 @@
1
- ## Installation
2
-
3
- Our [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5)
4
- has step-by-step instructions that install detectron2.
5
- The [Dockerfile](docker)
6
- also installs detectron2 with a few simple commands.
7
-
8
- ### Requirements
9
- - Linux or macOS with Python ≥ 3.6
10
- - PyTorch ≥ 1.4
11
- - [torchvision](https://github.com/pytorch/vision/) that matches the PyTorch installation.
12
- You can install them together at [pytorch.org](https://pytorch.org) to make sure of this.
13
- - OpenCV, optional, needed by demo and visualization
14
- - pycocotools: `pip install cython; pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'`
15
-
16
-
17
- ### Build Detectron2 from Source
18
-
19
- gcc & g++ ≥ 5 are required. [ninja](https://ninja-build.org/) is recommended for faster build.
20
- After having them, run:
21
- ```
22
- python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
23
- # (add --user if you don't have permission)
24
-
25
- # Or, to install it from a local clone:
26
- git clone https://github.com/facebookresearch/detectron2.git
27
- python -m pip install -e detectron2
28
-
29
- # Or if you are on macOS
30
- # CC=clang CXX=clang++ python -m pip install -e .
31
- ```
32
-
33
- To __rebuild__ detectron2 that's built from a local clone, use `rm -rf build/ **/*.so` to clean the
34
- old build first. You often need to rebuild detectron2 after reinstalling PyTorch.
35
-
36
- ### Install Pre-Built Detectron2 (Linux only)
37
- ```
38
- # for CUDA 10.1:
39
- python -m pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/index.html
40
- ```
41
- You can replace cu101 with "cu{100,92}" or "cpu".
42
-
43
- Note that:
44
- 1. Such installation has to be used with certain version of official PyTorch release.
45
- See [releases](https://github.com/facebookresearch/detectron2/releases) for requirements.
46
- It will not work with a different version of PyTorch or a non-official build of PyTorch.
47
- 2. Such installation is out-of-date w.r.t. master branch of detectron2. It may not be
48
- compatible with the master branch of a research project that uses detectron2 (e.g. those in
49
- [projects](projects) or [meshrcnn](https://github.com/facebookresearch/meshrcnn/)).
50
-
51
- ### Common Installation Issues
52
-
53
- If you met issues using the pre-built detectron2, please uninstall it and try building it from source.
54
-
55
- Click each issue for its solutions:
56
-
57
- <details>
58
- <summary>
59
- Undefined torch/aten/caffe2 symbols, or segmentation fault immediately when running the library.
60
- </summary>
61
- <br/>
62
-
63
- This usually happens when detectron2 or torchvision is not
64
- compiled with the version of PyTorch you're running.
65
-
66
- Pre-built torchvision or detectron2 has to work with the corresponding official release of pytorch.
67
- If the error comes from a pre-built torchvision, uninstall torchvision and pytorch and reinstall them
68
- following [pytorch.org](http://pytorch.org). So the versions will match.
69
-
70
- If the error comes from a pre-built detectron2, check [release notes](https://github.com/facebookresearch/detectron2/releases)
71
- to see the corresponding pytorch version required for each pre-built detectron2.
72
-
73
- If the error comes from detectron2 or torchvision that you built manually from source,
74
- remove files you built (`build/`, `**/*.so`) and rebuild it so it can pick up the version of pytorch currently in your environment.
75
-
76
- If you cannot resolve this problem, please include the output of `gdb -ex "r" -ex "bt" -ex "quit" --args python -m detectron2.utils.collect_env`
77
- in your issue.
78
- </details>
79
-
80
- <details>
81
- <summary>
82
- Undefined C++ symbols (e.g. `GLIBCXX`) or C++ symbols not found.
83
- </summary>
84
- <br/>
85
- Usually it's because the library is compiled with a newer C++ compiler but run with an old C++ runtime.
86
-
87
- This often happens with old anaconda.
88
- Try `conda update libgcc`. Then rebuild detectron2.
89
-
90
- The fundamental solution is to run the code with proper C++ runtime.
91
- One way is to use `LD_PRELOAD=/path/to/libstdc++.so`.
92
-
93
- </details>
94
-
95
- <details>
96
- <summary>
97
- "Not compiled with GPU support" or "Detectron2 CUDA Compiler: not available".
98
- </summary>
99
- <br/>
100
- CUDA is not found when building detectron2.
101
- You should make sure
102
-
103
- ```
104
- python -c 'import torch; from torch.utils.cpp_extension import CUDA_HOME; print(torch.cuda.is_available(), CUDA_HOME)'
105
- ```
106
-
107
- print valid outputs at the time you build detectron2.
108
-
109
- Most models can run inference (but not training) without GPU support. To use CPUs, set `MODEL.DEVICE='cpu'` in the config.
110
- </details>
111
-
112
- <details>
113
- <summary>
114
- "invalid device function" or "no kernel image is available for execution".
115
- </summary>
116
- <br/>
117
- Two possibilities:
118
-
119
- * You build detectron2 with one version of CUDA but run it with a different version.
120
-
121
- To check whether it is the case,
122
- use `python -m detectron2.utils.collect_env` to find out inconsistent CUDA versions.
123
- In the output of this command, you should expect "Detectron2 CUDA Compiler", "CUDA_HOME", "PyTorch built with - CUDA"
124
- to contain cuda libraries of the same version.
125
-
126
- When they are inconsistent,
127
- you need to either install a different build of PyTorch (or build by yourself)
128
- to match your local CUDA installation, or install a different version of CUDA to match PyTorch.
129
-
130
- * Detectron2 or PyTorch/torchvision is not built for the correct GPU architecture (compute compatibility).
131
-
132
- The GPU architecture for PyTorch/detectron2/torchvision is available in the "architecture flags" in
133
- `python -m detectron2.utils.collect_env`.
134
-
135
- The GPU architecture flags of detectron2/torchvision by default matches the GPU model detected
136
- during compilation. This means the compiled code may not work on a different GPU model.
137
- To overwrite the GPU architecture for detectron2/torchvision, use `TORCH_CUDA_ARCH_LIST` environment variable during compilation.
138
-
139
- For example, `export TORCH_CUDA_ARCH_LIST=6.0,7.0` makes it compile for both P100s and V100s.
140
- Visit [developer.nvidia.com/cuda-gpus](https://developer.nvidia.com/cuda-gpus) to find out
141
- the correct compute compatibility number for your device.
142
-
143
- </details>
144
-
145
- <details>
146
- <summary>
147
- Undefined CUDA symbols; cannot open libcudart.so; other nvcc failures.
148
- </summary>
149
- <br/>
150
- The version of NVCC you use to build detectron2 or torchvision does
151
- not match the version of CUDA you are running with.
152
- This often happens when using anaconda's CUDA runtime.
153
-
154
- Use `python -m detectron2.utils.collect_env` to find out inconsistent CUDA versions.
155
- In the output of this command, you should expect "Detectron2 CUDA Compiler", "CUDA_HOME", "PyTorch built with - CUDA"
156
- to contain cuda libraries of the same version.
157
-
158
- When they are inconsistent,
159
- you need to either install a different build of PyTorch (or build by yourself)
160
- to match your local CUDA installation, or install a different version of CUDA to match PyTorch.
161
- </details>
162
-
163
-
164
- <details>
165
- <summary>
166
- "ImportError: cannot import name '_C'".
167
- </summary>
168
- <br/>
169
- Please build and install detectron2 following the instructions above.
170
-
171
- If you are running code from detectron2's root directory, `cd` to a different one.
172
- Otherwise you may not import the code that you installed.
173
- </details>
174
-
175
- <details>
176
- <summary>
177
- ONNX conversion segfault after some "TraceWarning".
178
- </summary>
179
- <br/>
180
- The ONNX package is compiled with too old compiler.
181
-
182
- Please build and install ONNX from its source code using a compiler
183
- whose version is closer to what's used by PyTorch (available in `torch.__config__.show()`).
184
- </details>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/LICENSE DELETED
@@ -1,201 +0,0 @@
1
- Apache License
2
- Version 2.0, January 2004
3
- http://www.apache.org/licenses/
4
-
5
- TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
-
7
- 1. Definitions.
8
-
9
- "License" shall mean the terms and conditions for use, reproduction,
10
- and distribution as defined by Sections 1 through 9 of this document.
11
-
12
- "Licensor" shall mean the copyright owner or entity authorized by
13
- the copyright owner that is granting the License.
14
-
15
- "Legal Entity" shall mean the union of the acting entity and all
16
- other entities that control, are controlled by, or are under common
17
- control with that entity. For the purposes of this definition,
18
- "control" means (i) the power, direct or indirect, to cause the
19
- direction or management of such entity, whether by contract or
20
- otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
- outstanding shares, or (iii) beneficial ownership of such entity.
22
-
23
- "You" (or "Your") shall mean an individual or Legal Entity
24
- exercising permissions granted by this License.
25
-
26
- "Source" form shall mean the preferred form for making modifications,
27
- including but not limited to software source code, documentation
28
- source, and configuration files.
29
-
30
- "Object" form shall mean any form resulting from mechanical
31
- transformation or translation of a Source form, including but
32
- not limited to compiled object code, generated documentation,
33
- and conversions to other media types.
34
-
35
- "Work" shall mean the work of authorship, whether in Source or
36
- Object form, made available under the License, as indicated by a
37
- copyright notice that is included in or attached to the work
38
- (an example is provided in the Appendix below).
39
-
40
- "Derivative Works" shall mean any work, whether in Source or Object
41
- form, that is based on (or derived from) the Work and for which the
42
- editorial revisions, annotations, elaborations, or other modifications
43
- represent, as a whole, an original work of authorship. For the purposes
44
- of this License, Derivative Works shall not include works that remain
45
- separable from, or merely link (or bind by name) to the interfaces of,
46
- the Work and Derivative Works thereof.
47
-
48
- "Contribution" shall mean any work of authorship, including
49
- the original version of the Work and any modifications or additions
50
- to that Work or Derivative Works thereof, that is intentionally
51
- submitted to Licensor for inclusion in the Work by the copyright owner
52
- or by an individual or Legal Entity authorized to submit on behalf of
53
- the copyright owner. For the purposes of this definition, "submitted"
54
- means any form of electronic, verbal, or written communication sent
55
- to the Licensor or its representatives, including but not limited to
56
- communication on electronic mailing lists, source code control systems,
57
- and issue tracking systems that are managed by, or on behalf of, the
58
- Licensor for the purpose of discussing and improving the Work, but
59
- excluding communication that is conspicuously marked or otherwise
60
- designated in writing by the copyright owner as "Not a Contribution."
61
-
62
- "Contributor" shall mean Licensor and any individual or Legal Entity
63
- on behalf of whom a Contribution has been received by Licensor and
64
- subsequently incorporated within the Work.
65
-
66
- 2. Grant of Copyright License. Subject to the terms and conditions of
67
- this License, each Contributor hereby grants to You a perpetual,
68
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
- copyright license to reproduce, prepare Derivative Works of,
70
- publicly display, publicly perform, sublicense, and distribute the
71
- Work and such Derivative Works in Source or Object form.
72
-
73
- 3. Grant of Patent License. Subject to the terms and conditions of
74
- this License, each Contributor hereby grants to You a perpetual,
75
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
- (except as stated in this section) patent license to make, have made,
77
- use, offer to sell, sell, import, and otherwise transfer the Work,
78
- where such license applies only to those patent claims licensable
79
- by such Contributor that are necessarily infringed by their
80
- Contribution(s) alone or by combination of their Contribution(s)
81
- with the Work to which such Contribution(s) was submitted. If You
82
- institute patent litigation against any entity (including a
83
- cross-claim or counterclaim in a lawsuit) alleging that the Work
84
- or a Contribution incorporated within the Work constitutes direct
85
- or contributory patent infringement, then any patent licenses
86
- granted to You under this License for that Work shall terminate
87
- as of the date such litigation is filed.
88
-
89
- 4. Redistribution. You may reproduce and distribute copies of the
90
- Work or Derivative Works thereof in any medium, with or without
91
- modifications, and in Source or Object form, provided that You
92
- meet the following conditions:
93
-
94
- (a) You must give any other recipients of the Work or
95
- Derivative Works a copy of this License; and
96
-
97
- (b) You must cause any modified files to carry prominent notices
98
- stating that You changed the files; and
99
-
100
- (c) You must retain, in the Source form of any Derivative Works
101
- that You distribute, all copyright, patent, trademark, and
102
- attribution notices from the Source form of the Work,
103
- excluding those notices that do not pertain to any part of
104
- the Derivative Works; and
105
-
106
- (d) If the Work includes a "NOTICE" text file as part of its
107
- distribution, then any Derivative Works that You distribute must
108
- include a readable copy of the attribution notices contained
109
- within such NOTICE file, excluding those notices that do not
110
- pertain to any part of the Derivative Works, in at least one
111
- of the following places: within a NOTICE text file distributed
112
- as part of the Derivative Works; within the Source form or
113
- documentation, if provided along with the Derivative Works; or,
114
- within a display generated by the Derivative Works, if and
115
- wherever such third-party notices normally appear. The contents
116
- of the NOTICE file are for informational purposes only and
117
- do not modify the License. You may add Your own attribution
118
- notices within Derivative Works that You distribute, alongside
119
- or as an addendum to the NOTICE text from the Work, provided
120
- that such additional attribution notices cannot be construed
121
- as modifying the License.
122
-
123
- You may add Your own copyright statement to Your modifications and
124
- may provide additional or different license terms and conditions
125
- for use, reproduction, or distribution of Your modifications, or
126
- for any such Derivative Works as a whole, provided Your use,
127
- reproduction, and distribution of the Work otherwise complies with
128
- the conditions stated in this License.
129
-
130
- 5. Submission of Contributions. Unless You explicitly state otherwise,
131
- any Contribution intentionally submitted for inclusion in the Work
132
- by You to the Licensor shall be under the terms and conditions of
133
- this License, without any additional terms or conditions.
134
- Notwithstanding the above, nothing herein shall supersede or modify
135
- the terms of any separate license agreement you may have executed
136
- with Licensor regarding such Contributions.
137
-
138
- 6. Trademarks. This License does not grant permission to use the trade
139
- names, trademarks, service marks, or product names of the Licensor,
140
- except as required for reasonable and customary use in describing the
141
- origin of the Work and reproducing the content of the NOTICE file.
142
-
143
- 7. Disclaimer of Warranty. Unless required by applicable law or
144
- agreed to in writing, Licensor provides the Work (and each
145
- Contributor provides its Contributions) on an "AS IS" BASIS,
146
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
- implied, including, without limitation, any warranties or conditions
148
- of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
- PARTICULAR PURPOSE. You are solely responsible for determining the
150
- appropriateness of using or redistributing the Work and assume any
151
- risks associated with Your exercise of permissions under this License.
152
-
153
- 8. Limitation of Liability. In no event and under no legal theory,
154
- whether in tort (including negligence), contract, or otherwise,
155
- unless required by applicable law (such as deliberate and grossly
156
- negligent acts) or agreed to in writing, shall any Contributor be
157
- liable to You for damages, including any direct, indirect, special,
158
- incidental, or consequential damages of any character arising as a
159
- result of this License or out of the use or inability to use the
160
- Work (including but not limited to damages for loss of goodwill,
161
- work stoppage, computer failure or malfunction, or any and all
162
- other commercial damages or losses), even if such Contributor
163
- has been advised of the possibility of such damages.
164
-
165
- 9. Accepting Warranty or Additional Liability. While redistributing
166
- the Work or Derivative Works thereof, You may choose to offer,
167
- and charge a fee for, acceptance of support, warranty, indemnity,
168
- or other liability obligations and/or rights consistent with this
169
- License. However, in accepting such obligations, You may act only
170
- on Your own behalf and on Your sole responsibility, not on behalf
171
- of any other Contributor, and only if You agree to indemnify,
172
- defend, and hold each Contributor harmless for any liability
173
- incurred by, or claims asserted against, such Contributor by reason
174
- of your accepting any such warranty or additional liability.
175
-
176
- END OF TERMS AND CONDITIONS
177
-
178
- APPENDIX: How to apply the Apache License to your work.
179
-
180
- To apply the Apache License to your work, attach the following
181
- boilerplate notice, with the fields enclosed by brackets "[]"
182
- replaced with your own identifying information. (Don't include
183
- the brackets!) The text should be enclosed in the appropriate
184
- comment syntax for the file format. We also recommend that a
185
- file or class name and description of purpose be included on the
186
- same "printed page" as the copyright notice for easier
187
- identification within third-party archives.
188
-
189
- Copyright 2019 - present, Facebook, Inc
190
-
191
- Licensed under the Apache License, Version 2.0 (the "License");
192
- you may not use this file except in compliance with the License.
193
- You may obtain a copy of the License at
194
-
195
- http://www.apache.org/licenses/LICENSE-2.0
196
-
197
- Unless required by applicable law or agreed to in writing, software
198
- distributed under the License is distributed on an "AS IS" BASIS,
199
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
- See the License for the specific language governing permissions and
201
- limitations under the License.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/MODEL_ZOO.md DELETED
@@ -1,903 +0,0 @@
1
- # Detectron2 Model Zoo and Baselines
2
-
3
- ## Introduction
4
-
5
- This file documents a large collection of baselines trained
6
- with detectron2 in Sep-Oct, 2019.
7
- All numbers were obtained on [Big Basin](https://engineering.fb.com/data-center-engineering/introducing-big-basin-our-next-generation-ai-hardware/)
8
- servers with 8 NVIDIA V100 GPUs & NVLink. The software in use were PyTorch 1.3, CUDA 9.2, cuDNN 7.4.2 or 7.6.3.
9
- You can access these models from code using [detectron2.model_zoo](https://detectron2.readthedocs.io/modules/model_zoo.html) APIs.
10
-
11
- In addition to these official baseline models, you can find more models in [projects/](projects/).
12
-
13
- #### How to Read the Tables
14
- * The "Name" column contains a link to the config file. Running `tools/train_net.py` with this config file
15
- and 8 GPUs will reproduce the model.
16
- * Training speed is averaged across the entire training.
17
- We keep updating the speed with latest version of detectron2/pytorch/etc.,
18
- so they might be different from the `metrics` file.
19
- Training speed for multi-machine jobs is not provided.
20
- * Inference speed is measured by `tools/train_net.py --eval-only`, or [inference_on_dataset()](https://detectron2.readthedocs.io/modules/evaluation.html#detectron2.evaluation.inference_on_dataset),
21
- with batch size 1 in detectron2 directly.
22
- Measuring it with your own code will likely introduce other overhead.
23
- Actual deployment in production should in general be faster than the given inference
24
- speed due to more optimizations.
25
- * The *model id* column is provided for ease of reference.
26
- To check downloaded file integrity, any model on this page contains its md5 prefix in its file name.
27
- * Training curves and other statistics can be found in `metrics` for each model.
28
-
29
- #### Common Settings for COCO Models
30
- * All COCO models were trained on `train2017` and evaluated on `val2017`.
31
- * The default settings are __not directly comparable__ with Detectron's standard settings.
32
- For example, our default training data augmentation uses scale jittering in addition to horizontal flipping.
33
-
34
- To make fair comparisons with Detectron's settings, see
35
- [Detectron1-Comparisons](configs/Detectron1-Comparisons/) for accuracy comparison,
36
- and [benchmarks](https://detectron2.readthedocs.io/notes/benchmarks.html)
37
- for speed comparison.
38
- * For Faster/Mask R-CNN, we provide baselines based on __3 different backbone combinations__:
39
- * __FPN__: Use a ResNet+FPN backbone with standard conv and FC heads for mask and box prediction,
40
- respectively. It obtains the best
41
- speed/accuracy tradeoff, but the other two are still useful for research.
42
- * __C4__: Use a ResNet conv4 backbone with conv5 head. The original baseline in the Faster R-CNN paper.
43
- * __DC5__ (Dilated-C5): Use a ResNet conv5 backbone with dilations in conv5, and standard conv and FC heads
44
- for mask and box prediction, respectively.
45
- This is used by the Deformable ConvNet paper.
46
- * Most models are trained with the 3x schedule (~37 COCO epochs).
47
- Although 1x models are heavily under-trained, we provide some ResNet-50 models with the 1x (~12 COCO epochs)
48
- training schedule for comparison when doing quick research iteration.
49
-
50
- #### ImageNet Pretrained Models
51
-
52
- We provide backbone models pretrained on ImageNet-1k dataset.
53
- These models have __different__ format from those provided in Detectron: we do not fuse BatchNorm into an affine layer.
54
- * [R-50.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/MSRA/R-50.pkl): converted copy of [MSRA's original ResNet-50](https://github.com/KaimingHe/deep-residual-networks) model.
55
- * [R-101.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/MSRA/R-101.pkl): converted copy of [MSRA's original ResNet-101](https://github.com/KaimingHe/deep-residual-networks) model.
56
- * [X-101-32x8d.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/FAIR/X-101-32x8d.pkl): ResNeXt-101-32x8d model trained with Caffe2 at FB.
57
-
58
- Pretrained models in Detectron's format can still be used. For example:
59
- * [X-152-32x8d-IN5k.pkl](https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/25093814/X-152-32x8d-IN5k.pkl):
60
- ResNeXt-152-32x8d model trained on ImageNet-5k with Caffe2 at FB (see ResNeXt paper for details on ImageNet-5k).
61
- * [R-50-GN.pkl](https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/47261647/R-50-GN.pkl):
62
- ResNet-50 with Group Normalization.
63
- * [R-101-GN.pkl](https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/47592356/R-101-GN.pkl):
64
- ResNet-101 with Group Normalization.
65
-
66
- Torchvision's ResNet models can be used after converted by [this script](tools/convert-torchvision-to-d2.py).
67
-
68
- #### License
69
-
70
- All models available for download through this document are licensed under the
71
- [Creative Commons Attribution-ShareAlike 3.0 license](https://creativecommons.org/licenses/by-sa/3.0/).
72
-
73
- ### COCO Object Detection Baselines
74
-
75
- #### Faster R-CNN:
76
- <!--
77
- (fb only) To update the table in vim:
78
- 1. Remove the old table: d}
79
- 2. Copy the below command to the place of the table
80
- 3. :.!bash
81
-
82
- ./gen_html_table.py --config 'COCO-Detection/faster*50*'{1x,3x}'*' 'COCO-Detection/faster*101*' --name R50-C4 R50-DC5 R50-FPN R50-C4 R50-DC5 R50-FPN R101-C4 R101-DC5 R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP
83
- -->
84
-
85
-
86
- <table><tbody>
87
- <!-- START TABLE -->
88
- <!-- TABLE HEADER -->
89
- <th valign="bottom">Name</th>
90
- <th valign="bottom">lr<br/>sched</th>
91
- <th valign="bottom">train<br/>time<br/>(s/iter)</th>
92
- <th valign="bottom">inference<br/>time<br/>(s/im)</th>
93
- <th valign="bottom">train<br/>mem<br/>(GB)</th>
94
- <th valign="bottom">box<br/>AP</th>
95
- <th valign="bottom">model id</th>
96
- <th valign="bottom">download</th>
97
- <!-- TABLE BODY -->
98
- <!-- ROW: faster_rcnn_R_50_C4_1x -->
99
- <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_C4_1x.yaml">R50-C4</a></td>
100
- <td align="center">1x</td>
101
- <td align="center">0.551</td>
102
- <td align="center">0.102</td>
103
- <td align="center">4.8</td>
104
- <td align="center">35.7</td>
105
- <td align="center">137257644</td>
106
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_1x/137257644/model_final_721ade.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_1x/137257644/metrics.json">metrics</a></td>
107
- </tr>
108
- <!-- ROW: faster_rcnn_R_50_DC5_1x -->
109
- <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_DC5_1x.yaml">R50-DC5</a></td>
110
- <td align="center">1x</td>
111
- <td align="center">0.380</td>
112
- <td align="center">0.068</td>
113
- <td align="center">5.0</td>
114
- <td align="center">37.3</td>
115
- <td align="center">137847829</td>
116
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_1x/137847829/model_final_51d356.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_1x/137847829/metrics.json">metrics</a></td>
117
- </tr>
118
- <!-- ROW: faster_rcnn_R_50_FPN_1x -->
119
- <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
120
- <td align="center">1x</td>
121
- <td align="center">0.210</td>
122
- <td align="center">0.038</td>
123
- <td align="center">3.0</td>
124
- <td align="center">37.9</td>
125
- <td align="center">137257794</td>
126
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_1x/137257794/model_final_b275ba.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_1x/137257794/metrics.json">metrics</a></td>
127
- </tr>
128
- <!-- ROW: faster_rcnn_R_50_C4_3x -->
129
- <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_C4_3x.yaml">R50-C4</a></td>
130
- <td align="center">3x</td>
131
- <td align="center">0.543</td>
132
- <td align="center">0.104</td>
133
- <td align="center">4.8</td>
134
- <td align="center">38.4</td>
135
- <td align="center">137849393</td>
136
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_3x/137849393/model_final_f97cb7.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_3x/137849393/metrics.json">metrics</a></td>
137
- </tr>
138
- <!-- ROW: faster_rcnn_R_50_DC5_3x -->
139
- <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_DC5_3x.yaml">R50-DC5</a></td>
140
- <td align="center">3x</td>
141
- <td align="center">0.378</td>
142
- <td align="center">0.070</td>
143
- <td align="center">5.0</td>
144
- <td align="center">39.0</td>
145
- <td align="center">137849425</td>
146
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_3x/137849425/model_final_68d202.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_3x/137849425/metrics.json">metrics</a></td>
147
- </tr>
148
- <!-- ROW: faster_rcnn_R_50_FPN_3x -->
149
- <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml">R50-FPN</a></td>
150
- <td align="center">3x</td>
151
- <td align="center">0.209</td>
152
- <td align="center">0.038</td>
153
- <td align="center">3.0</td>
154
- <td align="center">40.2</td>
155
- <td align="center">137849458</td>
156
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/metrics.json">metrics</a></td>
157
- </tr>
158
- <!-- ROW: faster_rcnn_R_101_C4_3x -->
159
- <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_101_C4_3x.yaml">R101-C4</a></td>
160
- <td align="center">3x</td>
161
- <td align="center">0.619</td>
162
- <td align="center">0.139</td>
163
- <td align="center">5.9</td>
164
- <td align="center">41.1</td>
165
- <td align="center">138204752</td>
166
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_C4_3x/138204752/model_final_298dad.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_C4_3x/138204752/metrics.json">metrics</a></td>
167
- </tr>
168
- <!-- ROW: faster_rcnn_R_101_DC5_3x -->
169
- <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml">R101-DC5</a></td>
170
- <td align="center">3x</td>
171
- <td align="center">0.452</td>
172
- <td align="center">0.086</td>
173
- <td align="center">6.1</td>
174
- <td align="center">40.6</td>
175
- <td align="center">138204841</td>
176
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_DC5_3x/138204841/model_final_3e0943.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_DC5_3x/138204841/metrics.json">metrics</a></td>
177
- </tr>
178
- <!-- ROW: faster_rcnn_R_101_FPN_3x -->
179
- <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml">R101-FPN</a></td>
180
- <td align="center">3x</td>
181
- <td align="center">0.286</td>
182
- <td align="center">0.051</td>
183
- <td align="center">4.1</td>
184
- <td align="center">42.0</td>
185
- <td align="center">137851257</td>
186
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_FPN_3x/137851257/model_final_f6e8b1.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_FPN_3x/137851257/metrics.json">metrics</a></td>
187
- </tr>
188
- <!-- ROW: faster_rcnn_X_101_32x8d_FPN_3x -->
189
- <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml">X101-FPN</a></td>
190
- <td align="center">3x</td>
191
- <td align="center">0.638</td>
192
- <td align="center">0.098</td>
193
- <td align="center">6.7</td>
194
- <td align="center">43.0</td>
195
- <td align="center">139173657</td>
196
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x/139173657/model_final_68b088.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x/139173657/metrics.json">metrics</a></td>
197
- </tr>
198
- </tbody></table>
199
-
200
- #### RetinaNet:
201
- <!--
202
- ./gen_html_table.py --config 'COCO-Detection/retina*50*' 'COCO-Detection/retina*101*' --name R50 R50 R101 --fields lr_sched train_speed inference_speed mem box_AP
203
- -->
204
-
205
-
206
- <table><tbody>
207
- <!-- START TABLE -->
208
- <!-- TABLE HEADER -->
209
- <th valign="bottom">Name</th>
210
- <th valign="bottom">lr<br/>sched</th>
211
- <th valign="bottom">train<br/>time<br/>(s/iter)</th>
212
- <th valign="bottom">inference<br/>time<br/>(s/im)</th>
213
- <th valign="bottom">train<br/>mem<br/>(GB)</th>
214
- <th valign="bottom">box<br/>AP</th>
215
- <th valign="bottom">model id</th>
216
- <th valign="bottom">download</th>
217
- <!-- TABLE BODY -->
218
- <!-- ROW: retinanet_R_50_FPN_1x -->
219
- <tr><td align="left"><a href="configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml">R50</a></td>
220
- <td align="center">1x</td>
221
- <td align="center">0.200</td>
222
- <td align="center">0.055</td>
223
- <td align="center">3.9</td>
224
- <td align="center">36.5</td>
225
- <td align="center">137593951</td>
226
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_1x/137593951/model_final_b796dc.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_1x/137593951/metrics.json">metrics</a></td>
227
- </tr>
228
- <!-- ROW: retinanet_R_50_FPN_3x -->
229
- <tr><td align="left"><a href="configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml">R50</a></td>
230
- <td align="center">3x</td>
231
- <td align="center">0.201</td>
232
- <td align="center">0.055</td>
233
- <td align="center">3.9</td>
234
- <td align="center">37.9</td>
235
- <td align="center">137849486</td>
236
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_3x/137849486/model_final_4cafe0.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_3x/137849486/metrics.json">metrics</a></td>
237
- </tr>
238
- <!-- ROW: retinanet_R_101_FPN_3x -->
239
- <tr><td align="left"><a href="configs/COCO-Detection/retinanet_R_101_FPN_3x.yaml">R101</a></td>
240
- <td align="center">3x</td>
241
- <td align="center">0.280</td>
242
- <td align="center">0.068</td>
243
- <td align="center">5.1</td>
244
- <td align="center">39.9</td>
245
- <td align="center">138363263</td>
246
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_101_FPN_3x/138363263/model_final_59f53c.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_101_FPN_3x/138363263/metrics.json">metrics</a></td>
247
- </tr>
248
- </tbody></table>
249
-
250
- #### RPN & Fast R-CNN:
251
- <!--
252
- ./gen_html_table.py --config 'COCO-Detection/rpn*' 'COCO-Detection/fast_rcnn*' --name "RPN R50-C4" "RPN R50-FPN" "Fast R-CNN R50-FPN" --fields lr_sched train_speed inference_speed mem box_AP prop_AR
253
- -->
254
-
255
- <table><tbody>
256
- <!-- START TABLE -->
257
- <!-- TABLE HEADER -->
258
- <th valign="bottom">Name</th>
259
- <th valign="bottom">lr<br/>sched</th>
260
- <th valign="bottom">train<br/>time<br/>(s/iter)</th>
261
- <th valign="bottom">inference<br/>time<br/>(s/im)</th>
262
- <th valign="bottom">train<br/>mem<br/>(GB)</th>
263
- <th valign="bottom">box<br/>AP</th>
264
- <th valign="bottom">prop.<br/>AR</th>
265
- <th valign="bottom">model id</th>
266
- <th valign="bottom">download</th>
267
- <!-- TABLE BODY -->
268
- <!-- ROW: rpn_R_50_C4_1x -->
269
- <tr><td align="left"><a href="configs/COCO-Detection/rpn_R_50_C4_1x.yaml">RPN R50-C4</a></td>
270
- <td align="center">1x</td>
271
- <td align="center">0.130</td>
272
- <td align="center">0.034</td>
273
- <td align="center">1.5</td>
274
- <td align="center"></td>
275
- <td align="center">51.6</td>
276
- <td align="center">137258005</td>
277
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_C4_1x/137258005/model_final_450694.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_C4_1x/137258005/metrics.json">metrics</a></td>
278
- </tr>
279
- <!-- ROW: rpn_R_50_FPN_1x -->
280
- <tr><td align="left"><a href="configs/COCO-Detection/rpn_R_50_FPN_1x.yaml">RPN R50-FPN</a></td>
281
- <td align="center">1x</td>
282
- <td align="center">0.186</td>
283
- <td align="center">0.032</td>
284
- <td align="center">2.7</td>
285
- <td align="center"></td>
286
- <td align="center">58.0</td>
287
- <td align="center">137258492</td>
288
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_FPN_1x/137258492/model_final_02ce48.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_FPN_1x/137258492/metrics.json">metrics</a></td>
289
- </tr>
290
- <!-- ROW: fast_rcnn_R_50_FPN_1x -->
291
- <tr><td align="left"><a href="configs/COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml">Fast R-CNN R50-FPN</a></td>
292
- <td align="center">1x</td>
293
- <td align="center">0.140</td>
294
- <td align="center">0.029</td>
295
- <td align="center">2.6</td>
296
- <td align="center">37.8</td>
297
- <td align="center"></td>
298
- <td align="center">137635226</td>
299
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/fast_rcnn_R_50_FPN_1x/137635226/model_final_e5f7ce.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/fast_rcnn_R_50_FPN_1x/137635226/metrics.json">metrics</a></td>
300
- </tr>
301
- </tbody></table>
302
-
303
- ### COCO Instance Segmentation Baselines with Mask R-CNN
304
- <!--
305
- ./gen_html_table.py --config 'COCO-InstanceSegmentation/mask*50*'{1x,3x}'*' 'COCO-InstanceSegmentation/mask*101*' --name R50-C4 R50-DC5 R50-FPN R50-C4 R50-DC5 R50-FPN R101-C4 R101-DC5 R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP mask_AP
306
- -->
307
-
308
-
309
-
310
- <table><tbody>
311
- <!-- START TABLE -->
312
- <!-- TABLE HEADER -->
313
- <th valign="bottom">Name</th>
314
- <th valign="bottom">lr<br/>sched</th>
315
- <th valign="bottom">train<br/>time<br/>(s/iter)</th>
316
- <th valign="bottom">inference<br/>time<br/>(s/im)</th>
317
- <th valign="bottom">train<br/>mem<br/>(GB)</th>
318
- <th valign="bottom">box<br/>AP</th>
319
- <th valign="bottom">mask<br/>AP</th>
320
- <th valign="bottom">model id</th>
321
- <th valign="bottom">download</th>
322
- <!-- TABLE BODY -->
323
- <!-- ROW: mask_rcnn_R_50_C4_1x -->
324
- <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.yaml">R50-C4</a></td>
325
- <td align="center">1x</td>
326
- <td align="center">0.584</td>
327
- <td align="center">0.110</td>
328
- <td align="center">5.2</td>
329
- <td align="center">36.8</td>
330
- <td align="center">32.2</td>
331
- <td align="center">137259246</td>
332
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x/137259246/model_final_9243eb.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x/137259246/metrics.json">metrics</a></td>
333
- </tr>
334
- <!-- ROW: mask_rcnn_R_50_DC5_1x -->
335
- <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x.yaml">R50-DC5</a></td>
336
- <td align="center">1x</td>
337
- <td align="center">0.471</td>
338
- <td align="center">0.076</td>
339
- <td align="center">6.5</td>
340
- <td align="center">38.3</td>
341
- <td align="center">34.2</td>
342
- <td align="center">137260150</td>
343
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x/137260150/model_final_4f86c3.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x/137260150/metrics.json">metrics</a></td>
344
- </tr>
345
- <!-- ROW: mask_rcnn_R_50_FPN_1x -->
346
- <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
347
- <td align="center">1x</td>
348
- <td align="center">0.261</td>
349
- <td align="center">0.043</td>
350
- <td align="center">3.4</td>
351
- <td align="center">38.6</td>
352
- <td align="center">35.2</td>
353
- <td align="center">137260431</td>
354
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/model_final_a54504.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/metrics.json">metrics</a></td>
355
- </tr>
356
- <!-- ROW: mask_rcnn_R_50_C4_3x -->
357
- <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml">R50-C4</a></td>
358
- <td align="center">3x</td>
359
- <td align="center">0.575</td>
360
- <td align="center">0.111</td>
361
- <td align="center">5.2</td>
362
- <td align="center">39.8</td>
363
- <td align="center">34.4</td>
364
- <td align="center">137849525</td>
365
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x/137849525/model_final_4ce675.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x/137849525/metrics.json">metrics</a></td>
366
- </tr>
367
- <!-- ROW: mask_rcnn_R_50_DC5_3x -->
368
- <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml">R50-DC5</a></td>
369
- <td align="center">3x</td>
370
- <td align="center">0.470</td>
371
- <td align="center">0.076</td>
372
- <td align="center">6.5</td>
373
- <td align="center">40.0</td>
374
- <td align="center">35.9</td>
375
- <td align="center">137849551</td>
376
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x/137849551/model_final_84107b.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x/137849551/metrics.json">metrics</a></td>
377
- </tr>
378
- <!-- ROW: mask_rcnn_R_50_FPN_3x -->
379
- <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml">R50-FPN</a></td>
380
- <td align="center">3x</td>
381
- <td align="center">0.261</td>
382
- <td align="center">0.043</td>
383
- <td align="center">3.4</td>
384
- <td align="center">41.0</td>
385
- <td align="center">37.2</td>
386
- <td align="center">137849600</td>
387
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/metrics.json">metrics</a></td>
388
- </tr>
389
- <!-- ROW: mask_rcnn_R_101_C4_3x -->
390
- <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x.yaml">R101-C4</a></td>
391
- <td align="center">3x</td>
392
- <td align="center">0.652</td>
393
- <td align="center">0.145</td>
394
- <td align="center">6.3</td>
395
- <td align="center">42.6</td>
396
- <td align="center">36.7</td>
397
- <td align="center">138363239</td>
398
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x/138363239/model_final_a2914c.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x/138363239/metrics.json">metrics</a></td>
399
- </tr>
400
- <!-- ROW: mask_rcnn_R_101_DC5_3x -->
401
- <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x.yaml">R101-DC5</a></td>
402
- <td align="center">3x</td>
403
- <td align="center">0.545</td>
404
- <td align="center">0.092</td>
405
- <td align="center">7.6</td>
406
- <td align="center">41.9</td>
407
- <td align="center">37.3</td>
408
- <td align="center">138363294</td>
409
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x/138363294/model_final_0464b7.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x/138363294/metrics.json">metrics</a></td>
410
- </tr>
411
- <!-- ROW: mask_rcnn_R_101_FPN_3x -->
412
- <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml">R101-FPN</a></td>
413
- <td align="center">3x</td>
414
- <td align="center">0.340</td>
415
- <td align="center">0.056</td>
416
- <td align="center">4.6</td>
417
- <td align="center">42.9</td>
418
- <td align="center">38.6</td>
419
- <td align="center">138205316</td>
420
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x/138205316/model_final_a3ec72.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x/138205316/metrics.json">metrics</a></td>
421
- </tr>
422
- <!-- ROW: mask_rcnn_X_101_32x8d_FPN_3x -->
423
- <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml">X101-FPN</a></td>
424
- <td align="center">3x</td>
425
- <td align="center">0.690</td>
426
- <td align="center">0.103</td>
427
- <td align="center">7.2</td>
428
- <td align="center">44.3</td>
429
- <td align="center">39.5</td>
430
- <td align="center">139653917</td>
431
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x/139653917/model_final_2d9806.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x/139653917/metrics.json">metrics</a></td>
432
- </tr>
433
- </tbody></table>
434
-
435
- ### COCO Person Keypoint Detection Baselines with Keypoint R-CNN
436
- <!--
437
- ./gen_html_table.py --config 'COCO-Keypoints/*50*' 'COCO-Keypoints/*101*' --name R50-FPN R50-FPN R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP keypoint_AP
438
- -->
439
-
440
-
441
- <table><tbody>
442
- <!-- START TABLE -->
443
- <!-- TABLE HEADER -->
444
- <th valign="bottom">Name</th>
445
- <th valign="bottom">lr<br/>sched</th>
446
- <th valign="bottom">train<br/>time<br/>(s/iter)</th>
447
- <th valign="bottom">inference<br/>time<br/>(s/im)</th>
448
- <th valign="bottom">train<br/>mem<br/>(GB)</th>
449
- <th valign="bottom">box<br/>AP</th>
450
- <th valign="bottom">kp.<br/>AP</th>
451
- <th valign="bottom">model id</th>
452
- <th valign="bottom">download</th>
453
- <!-- TABLE BODY -->
454
- <!-- ROW: keypoint_rcnn_R_50_FPN_1x -->
455
- <tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
456
- <td align="center">1x</td>
457
- <td align="center">0.315</td>
458
- <td align="center">0.072</td>
459
- <td align="center">5.0</td>
460
- <td align="center">53.6</td>
461
- <td align="center">64.0</td>
462
- <td align="center">137261548</td>
463
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x/137261548/model_final_04e291.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x/137261548/metrics.json">metrics</a></td>
464
- </tr>
465
- <!-- ROW: keypoint_rcnn_R_50_FPN_3x -->
466
- <tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml">R50-FPN</a></td>
467
- <td align="center">3x</td>
468
- <td align="center">0.316</td>
469
- <td align="center">0.066</td>
470
- <td align="center">5.0</td>
471
- <td align="center">55.4</td>
472
- <td align="center">65.5</td>
473
- <td align="center">137849621</td>
474
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/model_final_a6e10b.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/metrics.json">metrics</a></td>
475
- </tr>
476
- <!-- ROW: keypoint_rcnn_R_101_FPN_3x -->
477
- <tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x.yaml">R101-FPN</a></td>
478
- <td align="center">3x</td>
479
- <td align="center">0.390</td>
480
- <td align="center">0.076</td>
481
- <td align="center">6.1</td>
482
- <td align="center">56.4</td>
483
- <td align="center">66.1</td>
484
- <td align="center">138363331</td>
485
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x/138363331/model_final_997cc7.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x/138363331/metrics.json">metrics</a></td>
486
- </tr>
487
- <!-- ROW: keypoint_rcnn_X_101_32x8d_FPN_3x -->
488
- <tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x.yaml">X101-FPN</a></td>
489
- <td align="center">3x</td>
490
- <td align="center">0.738</td>
491
- <td align="center">0.121</td>
492
- <td align="center">8.7</td>
493
- <td align="center">57.3</td>
494
- <td align="center">66.0</td>
495
- <td align="center">139686956</td>
496
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x/139686956/model_final_5ad38f.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x/139686956/metrics.json">metrics</a></td>
497
- </tr>
498
- </tbody></table>
499
-
500
- ### COCO Panoptic Segmentation Baselines with Panoptic FPN
501
- <!--
502
- ./gen_html_table.py --config 'COCO-PanopticSegmentation/*50*' 'COCO-PanopticSegmentation/*101*' --name R50-FPN R50-FPN R101-FPN --fields lr_sched train_speed inference_speed mem box_AP mask_AP PQ
503
- -->
504
-
505
-
506
- <table><tbody>
507
- <!-- START TABLE -->
508
- <!-- TABLE HEADER -->
509
- <th valign="bottom">Name</th>
510
- <th valign="bottom">lr<br/>sched</th>
511
- <th valign="bottom">train<br/>time<br/>(s/iter)</th>
512
- <th valign="bottom">inference<br/>time<br/>(s/im)</th>
513
- <th valign="bottom">train<br/>mem<br/>(GB)</th>
514
- <th valign="bottom">box<br/>AP</th>
515
- <th valign="bottom">mask<br/>AP</th>
516
- <th valign="bottom">PQ</th>
517
- <th valign="bottom">model id</th>
518
- <th valign="bottom">download</th>
519
- <!-- TABLE BODY -->
520
- <!-- ROW: panoptic_fpn_R_50_1x -->
521
- <tr><td align="left"><a href="configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.yaml">R50-FPN</a></td>
522
- <td align="center">1x</td>
523
- <td align="center">0.304</td>
524
- <td align="center">0.053</td>
525
- <td align="center">4.8</td>
526
- <td align="center">37.6</td>
527
- <td align="center">34.7</td>
528
- <td align="center">39.4</td>
529
- <td align="center">139514544</td>
530
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x/139514544/model_final_dbfeb4.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x/139514544/metrics.json">metrics</a></td>
531
- </tr>
532
- <!-- ROW: panoptic_fpn_R_50_3x -->
533
- <tr><td align="left"><a href="configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml">R50-FPN</a></td>
534
- <td align="center">3x</td>
535
- <td align="center">0.302</td>
536
- <td align="center">0.053</td>
537
- <td align="center">4.8</td>
538
- <td align="center">40.0</td>
539
- <td align="center">36.5</td>
540
- <td align="center">41.5</td>
541
- <td align="center">139514569</td>
542
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x/139514569/model_final_c10459.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x/139514569/metrics.json">metrics</a></td>
543
- </tr>
544
- <!-- ROW: panoptic_fpn_R_101_3x -->
545
- <tr><td align="left"><a href="configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml">R101-FPN</a></td>
546
- <td align="center">3x</td>
547
- <td align="center">0.392</td>
548
- <td align="center">0.066</td>
549
- <td align="center">6.0</td>
550
- <td align="center">42.4</td>
551
- <td align="center">38.5</td>
552
- <td align="center">43.0</td>
553
- <td align="center">139514519</td>
554
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x/139514519/model_final_cafdb1.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x/139514519/metrics.json">metrics</a></td>
555
- </tr>
556
- </tbody></table>
557
-
558
-
559
- ### LVIS Instance Segmentation Baselines with Mask R-CNN
560
-
561
- Mask R-CNN baselines on the [LVIS dataset](https://lvisdataset.org), v0.5.
562
- These baselines are described in Table 3(c) of the [LVIS paper](https://arxiv.org/abs/1908.03195).
563
-
564
- NOTE: the 1x schedule here has the same amount of __iterations__ as the COCO 1x baselines.
565
- They are roughly 24 epochs of LVISv0.5 data.
566
- The final results of these configs have large variance across different runs.
567
-
568
- <!--
569
- ./gen_html_table.py --config 'LVIS-InstanceSegmentation/mask*50*' 'LVIS-InstanceSegmentation/mask*101*' --name R50-FPN R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP mask_AP
570
- -->
571
-
572
-
573
- <table><tbody>
574
- <!-- START TABLE -->
575
- <!-- TABLE HEADER -->
576
- <th valign="bottom">Name</th>
577
- <th valign="bottom">lr<br/>sched</th>
578
- <th valign="bottom">train<br/>time<br/>(s/iter)</th>
579
- <th valign="bottom">inference<br/>time<br/>(s/im)</th>
580
- <th valign="bottom">train<br/>mem<br/>(GB)</th>
581
- <th valign="bottom">box<br/>AP</th>
582
- <th valign="bottom">mask<br/>AP</th>
583
- <th valign="bottom">model id</th>
584
- <th valign="bottom">download</th>
585
- <!-- TABLE BODY -->
586
- <!-- ROW: mask_rcnn_R_50_FPN_1x -->
587
- <tr><td align="left"><a href="configs/LVIS-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
588
- <td align="center">1x</td>
589
- <td align="center">0.292</td>
590
- <td align="center">0.107</td>
591
- <td align="center">7.1</td>
592
- <td align="center">23.6</td>
593
- <td align="center">24.4</td>
594
- <td align="center">144219072</td>
595
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/144219072/model_final_571f7c.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/144219072/metrics.json">metrics</a></td>
596
- </tr>
597
- <!-- ROW: mask_rcnn_R_101_FPN_1x -->
598
- <tr><td align="left"><a href="configs/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x.yaml">R101-FPN</a></td>
599
- <td align="center">1x</td>
600
- <td align="center">0.371</td>
601
- <td align="center">0.114</td>
602
- <td align="center">7.8</td>
603
- <td align="center">25.6</td>
604
- <td align="center">25.9</td>
605
- <td align="center">144219035</td>
606
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x/144219035/model_final_824ab5.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x/144219035/metrics.json">metrics</a></td>
607
- </tr>
608
- <!-- ROW: mask_rcnn_X_101_32x8d_FPN_1x -->
609
- <tr><td align="left"><a href="configs/LVIS-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x.yaml">X101-FPN</a></td>
610
- <td align="center">1x</td>
611
- <td align="center">0.712</td>
612
- <td align="center">0.151</td>
613
- <td align="center">10.2</td>
614
- <td align="center">26.7</td>
615
- <td align="center">27.1</td>
616
- <td align="center">144219108</td>
617
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x/144219108/model_final_5e3439.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x/144219108/metrics.json">metrics</a></td>
618
- </tr>
619
- </tbody></table>
620
-
621
-
622
-
623
- ### Cityscapes & Pascal VOC Baselines
624
-
625
- Simple baselines for
626
- * Mask R-CNN on Cityscapes instance segmentation (initialized from COCO pre-training, then trained on Cityscapes fine annotations only)
627
- * Faster R-CNN on PASCAL VOC object detection (trained on VOC 2007 train+val + VOC 2012 train+val, tested on VOC 2007 using 11-point interpolated AP)
628
-
629
- <!--
630
- ./gen_html_table.py --config 'Cityscapes/*' 'PascalVOC-Detection/*' --name "R50-FPN, Cityscapes" "R50-C4, VOC" --fields train_speed inference_speed mem box_AP box_AP50 mask_AP
631
- -->
632
-
633
-
634
- <table><tbody>
635
- <!-- START TABLE -->
636
- <!-- TABLE HEADER -->
637
- <th valign="bottom">Name</th>
638
- <th valign="bottom">train<br/>time<br/>(s/iter)</th>
639
- <th valign="bottom">inference<br/>time<br/>(s/im)</th>
640
- <th valign="bottom">train<br/>mem<br/>(GB)</th>
641
- <th valign="bottom">box<br/>AP</th>
642
- <th valign="bottom">box<br/>AP50</th>
643
- <th valign="bottom">mask<br/>AP</th>
644
- <th valign="bottom">model id</th>
645
- <th valign="bottom">download</th>
646
- <!-- TABLE BODY -->
647
- <!-- ROW: mask_rcnn_R_50_FPN -->
648
- <tr><td align="left"><a href="configs/Cityscapes/mask_rcnn_R_50_FPN.yaml">R50-FPN, Cityscapes</a></td>
649
- <td align="center">0.240</td>
650
- <td align="center">0.078</td>
651
- <td align="center">4.4</td>
652
- <td align="center"></td>
653
- <td align="center"></td>
654
- <td align="center">36.5</td>
655
- <td align="center">142423278</td>
656
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Cityscapes/mask_rcnn_R_50_FPN/142423278/model_final_af9cf5.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/Cityscapes/mask_rcnn_R_50_FPN/142423278/metrics.json">metrics</a></td>
657
- </tr>
658
- <!-- ROW: faster_rcnn_R_50_C4 -->
659
- <tr><td align="left"><a href="configs/PascalVOC-Detection/faster_rcnn_R_50_C4.yaml">R50-C4, VOC</a></td>
660
- <td align="center">0.537</td>
661
- <td align="center">0.081</td>
662
- <td align="center">4.8</td>
663
- <td align="center">51.9</td>
664
- <td align="center">80.3</td>
665
- <td align="center"></td>
666
- <td align="center">142202221</td>
667
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PascalVOC-Detection/faster_rcnn_R_50_C4/142202221/model_final_b1acc2.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/PascalVOC-Detection/faster_rcnn_R_50_C4/142202221/metrics.json">metrics</a></td>
668
- </tr>
669
- </tbody></table>
670
-
671
-
672
-
673
- ### Other Settings
674
-
675
- Ablations for Deformable Conv and Cascade R-CNN:
676
-
677
- <!--
678
- ./gen_html_table.py --config 'COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml' 'Misc/*R_50_FPN_1x_dconv*' 'Misc/cascade*1x.yaml' 'COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml' 'Misc/*R_50_FPN_3x_dconv*' 'Misc/cascade*3x.yaml' --name "Baseline R50-FPN" "Deformable Conv" "Cascade R-CNN" "Baseline R50-FPN" "Deformable Conv" "Cascade R-CNN" --fields lr_sched train_speed inference_speed mem box_AP mask_AP
679
- -->
680
-
681
-
682
- <table><tbody>
683
- <!-- START TABLE -->
684
- <!-- TABLE HEADER -->
685
- <th valign="bottom">Name</th>
686
- <th valign="bottom">lr<br/>sched</th>
687
- <th valign="bottom">train<br/>time<br/>(s/iter)</th>
688
- <th valign="bottom">inference<br/>time<br/>(s/im)</th>
689
- <th valign="bottom">train<br/>mem<br/>(GB)</th>
690
- <th valign="bottom">box<br/>AP</th>
691
- <th valign="bottom">mask<br/>AP</th>
692
- <th valign="bottom">model id</th>
693
- <th valign="bottom">download</th>
694
- <!-- TABLE BODY -->
695
- <!-- ROW: mask_rcnn_R_50_FPN_1x -->
696
- <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml">Baseline R50-FPN</a></td>
697
- <td align="center">1x</td>
698
- <td align="center">0.261</td>
699
- <td align="center">0.043</td>
700
- <td align="center">3.4</td>
701
- <td align="center">38.6</td>
702
- <td align="center">35.2</td>
703
- <td align="center">137260431</td>
704
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/model_final_a54504.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/metrics.json">metrics</a></td>
705
- </tr>
706
- <!-- ROW: mask_rcnn_R_50_FPN_1x_dconv_c3-c5 -->
707
- <tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5.yaml">Deformable Conv</a></td>
708
- <td align="center">1x</td>
709
- <td align="center">0.342</td>
710
- <td align="center">0.048</td>
711
- <td align="center">3.5</td>
712
- <td align="center">41.5</td>
713
- <td align="center">37.5</td>
714
- <td align="center">138602867</td>
715
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5/138602867/model_final_65c703.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5/138602867/metrics.json">metrics</a></td>
716
- </tr>
717
- <!-- ROW: cascade_mask_rcnn_R_50_FPN_1x -->
718
- <tr><td align="left"><a href="configs/Misc/cascade_mask_rcnn_R_50_FPN_1x.yaml">Cascade R-CNN</a></td>
719
- <td align="center">1x</td>
720
- <td align="center">0.317</td>
721
- <td align="center">0.052</td>
722
- <td align="center">4.0</td>
723
- <td align="center">42.1</td>
724
- <td align="center">36.4</td>
725
- <td align="center">138602847</td>
726
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_1x/138602847/model_final_e9d89b.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_1x/138602847/metrics.json">metrics</a></td>
727
- </tr>
728
- <!-- ROW: mask_rcnn_R_50_FPN_3x -->
729
- <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml">Baseline R50-FPN</a></td>
730
- <td align="center">3x</td>
731
- <td align="center">0.261</td>
732
- <td align="center">0.043</td>
733
- <td align="center">3.4</td>
734
- <td align="center">41.0</td>
735
- <td align="center">37.2</td>
736
- <td align="center">137849600</td>
737
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/metrics.json">metrics</a></td>
738
- </tr>
739
- <!-- ROW: mask_rcnn_R_50_FPN_3x_dconv_c3-c5 -->
740
- <tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5.yaml">Deformable Conv</a></td>
741
- <td align="center">3x</td>
742
- <td align="center">0.349</td>
743
- <td align="center">0.047</td>
744
- <td align="center">3.5</td>
745
- <td align="center">42.7</td>
746
- <td align="center">38.5</td>
747
- <td align="center">144998336</td>
748
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5/144998336/model_final_821d0b.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5/144998336/metrics.json">metrics</a></td>
749
- </tr>
750
- <!-- ROW: cascade_mask_rcnn_R_50_FPN_3x -->
751
- <tr><td align="left"><a href="configs/Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml">Cascade R-CNN</a></td>
752
- <td align="center">3x</td>
753
- <td align="center">0.328</td>
754
- <td align="center">0.053</td>
755
- <td align="center">4.0</td>
756
- <td align="center">44.3</td>
757
- <td align="center">38.5</td>
758
- <td align="center">144998488</td>
759
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_3x/144998488/model_final_480dd8.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_3x/144998488/metrics.json">metrics</a></td>
760
- </tr>
761
- </tbody></table>
762
-
763
-
764
- Ablations for normalization methods, and a few models trained from scratch following [Rethinking ImageNet Pre-training](https://arxiv.org/abs/1811.08883).
765
- (Note: The baseline uses `2fc` head while the others use [`4conv1fc` head](https://arxiv.org/abs/1803.08494))
766
- <!--
767
- ./gen_html_table.py --config 'COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml' 'Misc/mask*50_FPN_3x_gn.yaml' 'Misc/mask*50_FPN_3x_syncbn.yaml' 'Misc/scratch*' --name "Baseline R50-FPN" "GN" "SyncBN" "GN (from scratch)" "GN (from scratch)" "SyncBN (from scratch)" --fields lr_sched train_speed inference_speed mem box_AP mask_AP
768
- -->
769
-
770
-
771
- <table><tbody>
772
- <!-- START TABLE -->
773
- <!-- TABLE HEADER -->
774
- <th valign="bottom">Name</th>
775
- <th valign="bottom">lr<br/>sched</th>
776
- <th valign="bottom">train<br/>time<br/>(s/iter)</th>
777
- <th valign="bottom">inference<br/>time<br/>(s/im)</th>
778
- <th valign="bottom">train<br/>mem<br/>(GB)</th>
779
- <th valign="bottom">box<br/>AP</th>
780
- <th valign="bottom">mask<br/>AP</th>
781
- <th valign="bottom">model id</th>
782
- <th valign="bottom">download</th>
783
- <!-- TABLE BODY -->
784
- <!-- ROW: mask_rcnn_R_50_FPN_3x -->
785
- <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml">Baseline R50-FPN</a></td>
786
- <td align="center">3x</td>
787
- <td align="center">0.261</td>
788
- <td align="center">0.043</td>
789
- <td align="center">3.4</td>
790
- <td align="center">41.0</td>
791
- <td align="center">37.2</td>
792
- <td align="center">137849600</td>
793
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/metrics.json">metrics</a></td>
794
- </tr>
795
- <!-- ROW: mask_rcnn_R_50_FPN_3x_gn -->
796
- <tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_3x_gn.yaml">GN</a></td>
797
- <td align="center">3x</td>
798
- <td align="center">0.356</td>
799
- <td align="center">0.069</td>
800
- <td align="center">7.3</td>
801
- <td align="center">42.6</td>
802
- <td align="center">38.6</td>
803
- <td align="center">138602888</td>
804
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_gn/138602888/model_final_dc5d9e.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_gn/138602888/metrics.json">metrics</a></td>
805
- </tr>
806
- <!-- ROW: mask_rcnn_R_50_FPN_3x_syncbn -->
807
- <tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_3x_syncbn.yaml">SyncBN</a></td>
808
- <td align="center">3x</td>
809
- <td align="center">0.371</td>
810
- <td align="center">0.053</td>
811
- <td align="center">5.5</td>
812
- <td align="center">41.9</td>
813
- <td align="center">37.8</td>
814
- <td align="center">169527823</td>
815
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_syncbn/169527823/model_final_3b3c51.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_syncbn/169527823/metrics.json">metrics</a></td>
816
- </tr>
817
- <!-- ROW: scratch_mask_rcnn_R_50_FPN_3x_gn -->
818
- <tr><td align="left"><a href="configs/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn.yaml">GN (from scratch)</a></td>
819
- <td align="center">3x</td>
820
- <td align="center">0.400</td>
821
- <td align="center">0.069</td>
822
- <td align="center">9.8</td>
823
- <td align="center">39.9</td>
824
- <td align="center">36.6</td>
825
- <td align="center">138602908</td>
826
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn/138602908/model_final_01ca85.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn/138602908/metrics.json">metrics</a></td>
827
- </tr>
828
- <!-- ROW: scratch_mask_rcnn_R_50_FPN_9x_gn -->
829
- <tr><td align="left"><a href="configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn.yaml">GN (from scratch)</a></td>
830
- <td align="center">9x</td>
831
- <td align="center">N/A</td>
832
- <td align="center">0.070</td>
833
- <td align="center">9.8</td>
834
- <td align="center">43.7</td>
835
- <td align="center">39.6</td>
836
- <td align="center">183808979</td>
837
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn/183808979/model_final_da7b4c.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn/183808979/metrics.json">metrics</a></td>
838
- </tr>
839
- <!-- ROW: scratch_mask_rcnn_R_50_FPN_9x_syncbn -->
840
- <tr><td align="left"><a href="configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn.yaml">SyncBN (from scratch)</a></td>
841
- <td align="center">9x</td>
842
- <td align="center">N/A</td>
843
- <td align="center">0.055</td>
844
- <td align="center">7.2</td>
845
- <td align="center">43.6</td>
846
- <td align="center">39.3</td>
847
- <td align="center">184226666</td>
848
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn/184226666/model_final_5ce33e.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn/184226666/metrics.json">metrics</a></td>
849
- </tr>
850
- </tbody></table>
851
-
852
-
853
- A few very large models trained for a long time, for demo purposes. They are trained using multiple machines:
854
-
855
- <!--
856
- ./gen_html_table.py --config 'Misc/panoptic_*dconv*' 'Misc/cascade_*152*' --name "Panoptic FPN R101" "Mask R-CNN X152" --fields inference_speed mem box_AP mask_AP PQ
857
- # manually add TTA results
858
- -->
859
-
860
-
861
- <table><tbody>
862
- <!-- START TABLE -->
863
- <!-- TABLE HEADER -->
864
- <th valign="bottom">Name</th>
865
- <th valign="bottom">inference<br/>time<br/>(s/im)</th>
866
- <th valign="bottom">train<br/>mem<br/>(GB)</th>
867
- <th valign="bottom">box<br/>AP</th>
868
- <th valign="bottom">mask<br/>AP</th>
869
- <th valign="bottom">PQ</th>
870
- <th valign="bottom">model id</th>
871
- <th valign="bottom">download</th>
872
- <!-- TABLE BODY -->
873
- <!-- ROW: panoptic_fpn_R_101_dconv_cascade_gn_3x -->
874
- <tr><td align="left"><a href="configs/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x.yaml">Panoptic FPN R101</a></td>
875
- <td align="center">0.107</td>
876
- <td align="center">11.4</td>
877
- <td align="center">47.4</td>
878
- <td align="center">41.3</td>
879
- <td align="center">46.1</td>
880
- <td align="center">139797668</td>
881
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x/139797668/model_final_be35db.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x/139797668/metrics.json">metrics</a></td>
882
- </tr>
883
- <!-- ROW: cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv -->
884
- <tr><td align="left"><a href="configs/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml">Mask R-CNN X152</a></td>
885
- <td align="center">0.242</td>
886
- <td align="center">15.1</td>
887
- <td align="center">50.2</td>
888
- <td align="center">44.0</td>
889
- <td align="center"></td>
890
- <td align="center">18131413</td>
891
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv/18131413/model_0039999_e76410.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv/18131413/metrics.json">metrics</a></td>
892
- </tr>
893
- <!-- ROW: TTA cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv -->
894
- <tr><td align="left">above + test-time aug.</td>
895
- <td align="center"></td>
896
- <td align="center"></td>
897
- <td align="center">51.9</td>
898
- <td align="center">45.9</td>
899
- <td align="center"></td>
900
- <td align="center"></td>
901
- <td align="center"></td>
902
- </tr>
903
- </tbody></table>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/README.md DELETED
@@ -1,56 +0,0 @@
1
- <img src=".github/Detectron2-Logo-Horz.svg" width="300" >
2
-
3
- Detectron2 is Facebook AI Research's next generation software system
4
- that implements state-of-the-art object detection algorithms.
5
- It is a ground-up rewrite of the previous version,
6
- [Detectron](https://github.com/facebookresearch/Detectron/),
7
- and it originates from [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark/).
8
-
9
- <div align="center">
10
- <img src="https://user-images.githubusercontent.com/1381301/66535560-d3422200-eace-11e9-9123-5535d469db19.png"/>
11
- </div>
12
-
13
- ### What's New
14
- * It is powered by the [PyTorch](https://pytorch.org) deep learning framework.
15
- * Includes more features such as panoptic segmentation, densepose, Cascade R-CNN, rotated bounding boxes, etc.
16
- * Can be used as a library to support [different projects](projects/) on top of it.
17
- We'll open source more research projects in this way.
18
- * It [trains much faster](https://detectron2.readthedocs.io/notes/benchmarks.html).
19
-
20
- See our [blog post](https://ai.facebook.com/blog/-detectron2-a-pytorch-based-modular-object-detection-library-/)
21
- to see more demos and learn about detectron2.
22
-
23
- ## Installation
24
-
25
- See [INSTALL.md](INSTALL.md).
26
-
27
- ## Quick Start
28
-
29
- See [GETTING_STARTED.md](GETTING_STARTED.md),
30
- or the [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5).
31
-
32
- Learn more at our [documentation](https://detectron2.readthedocs.org).
33
- And see [projects/](projects/) for some projects that are built on top of detectron2.
34
-
35
- ## Model Zoo and Baselines
36
-
37
- We provide a large set of baseline results and trained models available for download in the [Detectron2 Model Zoo](MODEL_ZOO.md).
38
-
39
-
40
- ## License
41
-
42
- Detectron2 is released under the [Apache 2.0 license](LICENSE).
43
-
44
- ## Citing Detectron2
45
-
46
- If you use Detectron2 in your research or wish to refer to the baseline results published in the [Model Zoo](MODEL_ZOO.md), please use the following BibTeX entry.
47
-
48
- ```BibTeX
49
- @misc{wu2019detectron2,
50
- author = {Yuxin Wu and Alexander Kirillov and Francisco Massa and
51
- Wan-Yen Lo and Ross Girshick},
52
- title = {Detectron2},
53
- howpublished = {\url{https://github.com/facebookresearch/detectron2}},
54
- year = {2019}
55
- }
56
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-C4.yaml DELETED
@@ -1,18 +0,0 @@
1
- MODEL:
2
- META_ARCHITECTURE: "GeneralizedRCNN"
3
- RPN:
4
- PRE_NMS_TOPK_TEST: 6000
5
- POST_NMS_TOPK_TEST: 1000
6
- ROI_HEADS:
7
- NAME: "Res5ROIHeads"
8
- DATASETS:
9
- TRAIN: ("coco_2017_train",)
10
- TEST: ("coco_2017_val",)
11
- SOLVER:
12
- IMS_PER_BATCH: 16
13
- BASE_LR: 0.02
14
- STEPS: (60000, 80000)
15
- MAX_ITER: 90000
16
- INPUT:
17
- MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
18
- VERSION: 2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-DilatedC5.yaml DELETED
@@ -1,31 +0,0 @@
1
- MODEL:
2
- META_ARCHITECTURE: "GeneralizedRCNN"
3
- RESNETS:
4
- OUT_FEATURES: ["res5"]
5
- RES5_DILATION: 2
6
- RPN:
7
- IN_FEATURES: ["res5"]
8
- PRE_NMS_TOPK_TEST: 6000
9
- POST_NMS_TOPK_TEST: 1000
10
- ROI_HEADS:
11
- NAME: "StandardROIHeads"
12
- IN_FEATURES: ["res5"]
13
- ROI_BOX_HEAD:
14
- NAME: "FastRCNNConvFCHead"
15
- NUM_FC: 2
16
- POOLER_RESOLUTION: 7
17
- ROI_MASK_HEAD:
18
- NAME: "MaskRCNNConvUpsampleHead"
19
- NUM_CONV: 4
20
- POOLER_RESOLUTION: 14
21
- DATASETS:
22
- TRAIN: ("coco_2017_train",)
23
- TEST: ("coco_2017_val",)
24
- SOLVER:
25
- IMS_PER_BATCH: 16
26
- BASE_LR: 0.02
27
- STEPS: (60000, 80000)
28
- MAX_ITER: 90000
29
- INPUT:
30
- MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
31
- VERSION: 2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-FPN.yaml DELETED
@@ -1,42 +0,0 @@
1
- MODEL:
2
- META_ARCHITECTURE: "GeneralizedRCNN"
3
- BACKBONE:
4
- NAME: "build_resnet_fpn_backbone"
5
- RESNETS:
6
- OUT_FEATURES: ["res2", "res3", "res4", "res5"]
7
- FPN:
8
- IN_FEATURES: ["res2", "res3", "res4", "res5"]
9
- ANCHOR_GENERATOR:
10
- SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
11
- ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
12
- RPN:
13
- IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
14
- PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
15
- PRE_NMS_TOPK_TEST: 1000 # Per FPN level
16
- # Detectron1 uses 2000 proposals per-batch,
17
- # (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
18
- # which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
19
- POST_NMS_TOPK_TRAIN: 1000
20
- POST_NMS_TOPK_TEST: 1000
21
- ROI_HEADS:
22
- NAME: "StandardROIHeads"
23
- IN_FEATURES: ["p2", "p3", "p4", "p5"]
24
- ROI_BOX_HEAD:
25
- NAME: "FastRCNNConvFCHead"
26
- NUM_FC: 2
27
- POOLER_RESOLUTION: 7
28
- ROI_MASK_HEAD:
29
- NAME: "MaskRCNNConvUpsampleHead"
30
- NUM_CONV: 4
31
- POOLER_RESOLUTION: 14
32
- DATASETS:
33
- TRAIN: ("coco_2017_train",)
34
- TEST: ("coco_2017_val",)
35
- SOLVER:
36
- IMS_PER_BATCH: 16
37
- BASE_LR: 0.02
38
- STEPS: (60000, 80000)
39
- MAX_ITER: 90000
40
- INPUT:
41
- MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
42
- VERSION: 2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RetinaNet.yaml DELETED
@@ -1,24 +0,0 @@
1
- MODEL:
2
- META_ARCHITECTURE: "RetinaNet"
3
- BACKBONE:
4
- NAME: "build_retinanet_resnet_fpn_backbone"
5
- RESNETS:
6
- OUT_FEATURES: ["res3", "res4", "res5"]
7
- ANCHOR_GENERATOR:
8
- SIZES: !!python/object/apply:eval ["[[x, x * 2**(1.0/3), x * 2**(2.0/3) ] for x in [32, 64, 128, 256, 512 ]]"]
9
- FPN:
10
- IN_FEATURES: ["res3", "res4", "res5"]
11
- RETINANET:
12
- IOU_THRESHOLDS: [0.4, 0.5]
13
- IOU_LABELS: [0, -1, 1]
14
- DATASETS:
15
- TRAIN: ("coco_2017_train",)
16
- TEST: ("coco_2017_val",)
17
- SOLVER:
18
- IMS_PER_BATCH: 16
19
- BASE_LR: 0.01 # Note that RetinaNet uses a different default learning rate
20
- STEPS: (60000, 80000)
21
- MAX_ITER: 90000
22
- INPUT:
23
- MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
24
- VERSION: 2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml DELETED
@@ -1,17 +0,0 @@
1
- _BASE_: "../Base-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
- MASK_ON: False
5
- LOAD_PROPOSALS: True
6
- RESNETS:
7
- DEPTH: 50
8
- PROPOSAL_GENERATOR:
9
- NAME: "PrecomputedProposals"
10
- DATASETS:
11
- TRAIN: ("coco_2017_train",)
12
- PROPOSAL_FILES_TRAIN: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_train_box_proposals_21bc3a.pkl", )
13
- TEST: ("coco_2017_val",)
14
- PROPOSAL_FILES_TEST: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
15
- DATALOADER:
16
- # proposals are part of the dataset_dicts, and take a lot of RAM
17
- NUM_WORKERS: 2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_C4_3x.yaml DELETED
@@ -1,9 +0,0 @@
1
- _BASE_: "../Base-RCNN-C4.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
- MASK_ON: False
5
- RESNETS:
6
- DEPTH: 101
7
- SOLVER:
8
- STEPS: (210000, 250000)
9
- MAX_ITER: 270000
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml DELETED
@@ -1,9 +0,0 @@
1
- _BASE_: "../Base-RCNN-DilatedC5.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
- MASK_ON: False
5
- RESNETS:
6
- DEPTH: 101
7
- SOLVER:
8
- STEPS: (210000, 250000)
9
- MAX_ITER: 270000
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml DELETED
@@ -1,9 +0,0 @@
1
- _BASE_: "../Base-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
- MASK_ON: False
5
- RESNETS:
6
- DEPTH: 101
7
- SOLVER:
8
- STEPS: (210000, 250000)
9
- MAX_ITER: 270000
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_C4_1x.yaml DELETED
@@ -1,6 +0,0 @@
1
- _BASE_: "../Base-RCNN-C4.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
- MASK_ON: False
5
- RESNETS:
6
- DEPTH: 50
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_C4_3x.yaml DELETED
@@ -1,9 +0,0 @@
1
- _BASE_: "../Base-RCNN-C4.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
- MASK_ON: False
5
- RESNETS:
6
- DEPTH: 50
7
- SOLVER:
8
- STEPS: (210000, 250000)
9
- MAX_ITER: 270000
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_DC5_1x.yaml DELETED
@@ -1,6 +0,0 @@
1
- _BASE_: "../Base-RCNN-DilatedC5.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
- MASK_ON: False
5
- RESNETS:
6
- DEPTH: 50
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_DC5_3x.yaml DELETED
@@ -1,9 +0,0 @@
1
- _BASE_: "../Base-RCNN-DilatedC5.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
- MASK_ON: False
5
- RESNETS:
6
- DEPTH: 50
7
- SOLVER:
8
- STEPS: (210000, 250000)
9
- MAX_ITER: 270000
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml DELETED
@@ -1,6 +0,0 @@
1
- _BASE_: "../Base-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
- MASK_ON: False
5
- RESNETS:
6
- DEPTH: 50
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml DELETED
@@ -1,9 +0,0 @@
1
- _BASE_: "../Base-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
- MASK_ON: False
5
- RESNETS:
6
- DEPTH: 50
7
- SOLVER:
8
- STEPS: (210000, 250000)
9
- MAX_ITER: 270000
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml DELETED
@@ -1,13 +0,0 @@
1
- _BASE_: "../Base-RCNN-FPN.yaml"
2
- MODEL:
3
- MASK_ON: False
4
- WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
5
- PIXEL_STD: [57.375, 57.120, 58.395]
6
- RESNETS:
7
- STRIDE_IN_1X1: False # this is a C2 model
8
- NUM_GROUPS: 32
9
- WIDTH_PER_GROUP: 8
10
- DEPTH: 101
11
- SOLVER:
12
- STEPS: (210000, 250000)
13
- MAX_ITER: 270000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/retinanet_R_101_FPN_3x.yaml DELETED
@@ -1,8 +0,0 @@
1
- _BASE_: "../Base-RetinaNet.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
- RESNETS:
5
- DEPTH: 101
6
- SOLVER:
7
- STEPS: (210000, 250000)
8
- MAX_ITER: 270000
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml DELETED
@@ -1,5 +0,0 @@
1
- _BASE_: "../Base-RetinaNet.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
- RESNETS:
5
- DEPTH: 50
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml DELETED
@@ -1,8 +0,0 @@
1
- _BASE_: "../Base-RetinaNet.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
- RESNETS:
5
- DEPTH: 50
6
- SOLVER:
7
- STEPS: (210000, 250000)
8
- MAX_ITER: 270000
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/rpn_R_50_C4_1x.yaml DELETED
@@ -1,10 +0,0 @@
1
- _BASE_: "../Base-RCNN-C4.yaml"
2
- MODEL:
3
- META_ARCHITECTURE: "ProposalNetwork"
4
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
5
- MASK_ON: False
6
- RESNETS:
7
- DEPTH: 50
8
- RPN:
9
- PRE_NMS_TOPK_TEST: 12000
10
- POST_NMS_TOPK_TEST: 2000
 
 
 
 
 
 
 
 
 
 
 
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/rpn_R_50_FPN_1x.yaml DELETED
@@ -1,9 +0,0 @@
1
- _BASE_: "../Base-RCNN-FPN.yaml"
2
- MODEL:
3
- META_ARCHITECTURE: "ProposalNetwork"
4
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
5
- MASK_ON: False
6
- RESNETS:
7
- DEPTH: 50
8
- RPN:
9
- POST_NMS_TOPK_TEST: 2000