Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. | |
import numpy as np | |
from typing import Callable, Dict, Optional, Tuple, Union | |
import fvcore.nn.weight_init as weight_init | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from detectron2.config import configurable | |
from detectron2.layers import Conv2d, ShapeSpec, get_norm | |
from detectron2.structures import ImageList | |
from detectron2.utils.registry import Registry | |
from ..backbone import Backbone, build_backbone | |
from ..postprocessing import sem_seg_postprocess | |
from .build import META_ARCH_REGISTRY | |
__all__ = [ | |
"SemanticSegmentor", | |
"SEM_SEG_HEADS_REGISTRY", | |
"SemSegFPNHead", | |
"build_sem_seg_head", | |
] | |
SEM_SEG_HEADS_REGISTRY = Registry("SEM_SEG_HEADS") | |
SEM_SEG_HEADS_REGISTRY.__doc__ = """ | |
Registry for semantic segmentation heads, which make semantic segmentation predictions | |
from feature maps. | |
""" | |
class SemanticSegmentor(nn.Module): | |
""" | |
Main class for semantic segmentation architectures. | |
""" | |
def __init__( | |
self, | |
*, | |
backbone: Backbone, | |
sem_seg_head: nn.Module, | |
pixel_mean: Tuple[float], | |
pixel_std: Tuple[float], | |
): | |
""" | |
Args: | |
backbone: a backbone module, must follow detectron2's backbone interface | |
sem_seg_head: a module that predicts semantic segmentation from backbone features | |
pixel_mean, pixel_std: list or tuple with #channels element, representing | |
the per-channel mean and std to be used to normalize the input image | |
""" | |
super().__init__() | |
self.backbone = backbone | |
self.sem_seg_head = sem_seg_head | |
self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False) | |
self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False) | |
def from_config(cls, cfg): | |
backbone = build_backbone(cfg) | |
sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape()) | |
return { | |
"backbone": backbone, | |
"sem_seg_head": sem_seg_head, | |
"pixel_mean": cfg.MODEL.PIXEL_MEAN, | |
"pixel_std": cfg.MODEL.PIXEL_STD, | |
} | |
def device(self): | |
return self.pixel_mean.device | |
def forward(self, batched_inputs): | |
""" | |
Args: | |
batched_inputs: a list, batched outputs of :class:`DatasetMapper`. | |
Each item in the list contains the inputs for one image. | |
For now, each item in the list is a dict that contains: | |
* "image": Tensor, image in (C, H, W) format. | |
* "sem_seg": semantic segmentation ground truth | |
* Other information that's included in the original dicts, such as: | |
"height", "width" (int): the output resolution of the model (may be different | |
from input resolution), used in inference. | |
Returns: | |
list[dict]: | |
Each dict is the output for one input image. | |
The dict contains one key "sem_seg" whose value is a | |
Tensor that represents the | |
per-pixel segmentation prediced by the head. | |
The prediction has shape KxHxW that represents the logits of | |
each class for each pixel. | |
""" | |
images = [x["image"].to(self.device) for x in batched_inputs] | |
images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
images = ImageList.from_tensors( | |
images, | |
self.backbone.size_divisibility, | |
padding_constraints=self.backbone.padding_constraints, | |
) | |
features = self.backbone(images.tensor) | |
if "sem_seg" in batched_inputs[0]: | |
targets = [x["sem_seg"].to(self.device) for x in batched_inputs] | |
targets = ImageList.from_tensors( | |
targets, | |
self.backbone.size_divisibility, | |
self.sem_seg_head.ignore_value, | |
self.backbone.padding_constraints, | |
).tensor | |
else: | |
targets = None | |
results, losses = self.sem_seg_head(features, targets) | |
if self.training: | |
return losses | |
processed_results = [] | |
for result, input_per_image, image_size in zip(results, batched_inputs, images.image_sizes): | |
height = input_per_image.get("height", image_size[0]) | |
width = input_per_image.get("width", image_size[1]) | |
r = sem_seg_postprocess(result, image_size, height, width) | |
processed_results.append({"sem_seg": r}) | |
return processed_results | |
def build_sem_seg_head(cfg, input_shape): | |
""" | |
Build a semantic segmentation head from `cfg.MODEL.SEM_SEG_HEAD.NAME`. | |
""" | |
name = cfg.MODEL.SEM_SEG_HEAD.NAME | |
return SEM_SEG_HEADS_REGISTRY.get(name)(cfg, input_shape) | |
class SemSegFPNHead(nn.Module): | |
""" | |
A semantic segmentation head described in :paper:`PanopticFPN`. | |
It takes a list of FPN features as input, and applies a sequence of | |
3x3 convs and upsampling to scale all of them to the stride defined by | |
``common_stride``. Then these features are added and used to make final | |
predictions by another 1x1 conv layer. | |
""" | |
def __init__( | |
self, | |
input_shape: Dict[str, ShapeSpec], | |
*, | |
num_classes: int, | |
conv_dims: int, | |
common_stride: int, | |
loss_weight: float = 1.0, | |
norm: Optional[Union[str, Callable]] = None, | |
ignore_value: int = -1, | |
): | |
""" | |
NOTE: this interface is experimental. | |
Args: | |
input_shape: shapes (channels and stride) of the input features | |
num_classes: number of classes to predict | |
conv_dims: number of output channels for the intermediate conv layers. | |
common_stride: the common stride that all features will be upscaled to | |
loss_weight: loss weight | |
norm (str or callable): normalization for all conv layers | |
ignore_value: category id to be ignored during training. | |
""" | |
super().__init__() | |
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride) | |
if not len(input_shape): | |
raise ValueError("SemSegFPNHead(input_shape=) cannot be empty!") | |
self.in_features = [k for k, v in input_shape] | |
feature_strides = [v.stride for k, v in input_shape] | |
feature_channels = [v.channels for k, v in input_shape] | |
self.ignore_value = ignore_value | |
self.common_stride = common_stride | |
self.loss_weight = loss_weight | |
self.scale_heads = [] | |
for in_feature, stride, channels in zip( | |
self.in_features, feature_strides, feature_channels | |
): | |
head_ops = [] | |
head_length = max(1, int(np.log2(stride) - np.log2(self.common_stride))) | |
for k in range(head_length): | |
norm_module = get_norm(norm, conv_dims) | |
conv = Conv2d( | |
channels if k == 0 else conv_dims, | |
conv_dims, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=not norm, | |
norm=norm_module, | |
activation=F.relu, | |
) | |
weight_init.c2_msra_fill(conv) | |
head_ops.append(conv) | |
if stride != self.common_stride: | |
head_ops.append( | |
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False) | |
) | |
self.scale_heads.append(nn.Sequential(*head_ops)) | |
self.add_module(in_feature, self.scale_heads[-1]) | |
self.predictor = Conv2d(conv_dims, num_classes, kernel_size=1, stride=1, padding=0) | |
weight_init.c2_msra_fill(self.predictor) | |
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]): | |
return { | |
"input_shape": { | |
k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES | |
}, | |
"ignore_value": cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE, | |
"num_classes": cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES, | |
"conv_dims": cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM, | |
"common_stride": cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE, | |
"norm": cfg.MODEL.SEM_SEG_HEAD.NORM, | |
"loss_weight": cfg.MODEL.SEM_SEG_HEAD.LOSS_WEIGHT, | |
} | |
def forward(self, features, targets=None): | |
""" | |
Returns: | |
In training, returns (None, dict of losses) | |
In inference, returns (CxHxW logits, {}) | |
""" | |
x = self.layers(features) | |
if self.training: | |
return None, self.losses(x, targets) | |
else: | |
x = F.interpolate( | |
x, scale_factor=self.common_stride, mode="bilinear", align_corners=False | |
) | |
return x, {} | |
def layers(self, features): | |
for i, f in enumerate(self.in_features): | |
if i == 0: | |
x = self.scale_heads[i](features[f]) | |
else: | |
x = x + self.scale_heads[i](features[f]) | |
x = self.predictor(x) | |
return x | |
def losses(self, predictions, targets): | |
predictions = predictions.float() # https://github.com/pytorch/pytorch/issues/48163 | |
predictions = F.interpolate( | |
predictions, | |
scale_factor=self.common_stride, | |
mode="bilinear", | |
align_corners=False, | |
) | |
loss = F.cross_entropy( | |
predictions, targets, reduction="mean", ignore_index=self.ignore_value | |
) | |
losses = {"loss_sem_seg": loss * self.loss_weight} | |
return losses | |