Spaces:
Sleeping
Sleeping
from datasets import load_dataset | |
import numpy as np | |
from sklearn.svm import SVC | |
from tqdm.notebook import tqdm | |
from sklearn.preprocessing import StandardScaler | |
from sklearn.metrics import classification_report | |
import nltk | |
from nltk.corpus import stopwords | |
from nltk import word_tokenize | |
from nltk import pos_tag | |
import pickle | |
import time | |
from nltk.corpus import names, gazetteers | |
from sklearn.model_selection import KFold | |
from itertools import chain | |
from sklearn.metrics import precision_score, recall_score, fbeta_score, confusion_matrix | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
nltk.download('stopwords') | |
stopwords = stopwords.words('english') | |
pos_tags = [ 'CC', 'CD', 'DT', 'EX', 'FW', 'IN', 'JJ', 'JJR', 'JJS', 'LS', 'MD', 'NN', 'NNP', 'NNPS', | |
'NNS', 'NN|SYM', 'PDT', 'POS', 'PRP', 'PRP$', 'RB', 'RBR', 'RBS', 'RP', 'SYM', 'TO', 'UH', 'VB', 'VBD', | |
'VBG', 'VBN', 'VBP', 'VBZ', 'WDT', 'WP', 'WP$', 'WRB' | |
] | |
def feature_vector(word, prev_word_pos_tag, next_word_pos_tag, current_word_pos_tag): | |
vec = np.zeros(116).astype('float32') | |
if(word.istitle()): | |
vec[0] = 1 | |
if word.lower() in stopwords: | |
vec[1] = 1 | |
if(word.isupper()): | |
vec[2] = 1 | |
vec[3] = len(word) | |
vec[4] = word.isdigit() | |
if prev_word_pos_tag!=-1: | |
vec[5+prev_word_pos_tag] = 1 | |
if next_word_pos_tag!=-1: | |
vec[42+next_word_pos_tag] = 1 | |
if current_word_pos_tag!=-1: | |
vec[79+current_word_pos_tag] = 1 | |
return vec | |
def feature_vector2(word, prev_word_pos_tag, next_word_pos_tag, current_word_pos_tag): | |
vec = np.zeros(9).astype('float32') | |
if(word.istitle()): | |
vec[0] = 1 | |
if word.lower() in stopwords: | |
vec[1] = 1 | |
if(word.isupper()): | |
vec[2] = 1 | |
vec[3] = len(word) | |
vec[4] = word.isdigit() | |
# idx : -11, 0...36 | |
# if prev_word_pos_tag!=-11: | |
# vec[5+prev_word_pos_tag] = 1 | |
# if next_word_pos_tag!=-11: | |
# vec[42+next_word_pos_tag] = 1 | |
# if current_word_pos_tag!=-11: | |
# vec[79+current_word_pos_tag] = 1 | |
vec[5] = 1 if word in places else 0 | |
vec[6] = 1 if word in people else 0 | |
vec[7] = 1 if word in countries else 0 | |
vec[8] = 1 if word in nationalities else 0 | |
return vec | |
# This function is used to make dataset with features and target label | |
def create_data(data): | |
x_train = [] | |
y_train = [] | |
for x in data: | |
for y in range(len(x['tokens'])): | |
prev_pos = -1 if y==0 or x['pos_tags'][y-1]<10 else x['pos_tags'][y-1] | |
next_pos = -1 if y==len(x['tokens'])-1 or x['pos_tags'][y+1]<10 else x['pos_tags'][y+1] | |
current_pos = -1 if x['pos_tags'][y]<10 else x['pos_tags'][y] | |
wordVec = feature_vector(x['tokens'][y], prev_pos-10, next_pos-10, current_pos-10) | |
x_train.append(wordVec) | |
y_train.append(1 if x['ner_tags'][y]!=0 else 0) | |
return x_train, y_train | |
def evaluate_overall_metrics(predictions, folds): | |
precision, recall, f0_5_score, f1_score, f2_score = 0, 0, 0, 0, 0 | |
for i, (test_label_flat, y_pred_flat) in enumerate(predictions): | |
# test_label_flat = list(chain.from_iterable(test_label)) | |
# y_pred_flat = list(chain.from_iterable(y_pred)) | |
# Calculate scores | |
f0_5_score += fbeta_score(test_label_flat, y_pred_flat, beta=0.5, average='weighted') | |
f1_score += fbeta_score(test_label_flat, y_pred_flat, beta=1, average='weighted') | |
f2_score += fbeta_score(test_label_flat, y_pred_flat, beta=2, average='weighted') | |
precision += precision_score(test_label_flat, y_pred_flat, average='weighted') | |
recall += recall_score(test_label_flat, y_pred_flat, average='weighted') | |
# Averaging across folds | |
f0_5_score /= folds | |
f1_score /= folds | |
f2_score /= folds | |
precision /= folds | |
recall /= folds | |
print(f'Overall Metrics:') | |
print(f'Precision : {precision:.3f}') | |
print(f'Recall : {recall:.3f}') | |
print(f'F0.5 Score : {f0_5_score:.3f}') | |
print(f'F1 Score : {f1_score:.3f}') | |
print(f'F2 Score : {f2_score:.3f}\n') | |
def evaluate_per_pos_metrics(predictions, labels): | |
combined_true = [] | |
combined_pred = [] | |
# Flatten the list of lists structure | |
for test_label, y_pred in predictions: | |
# for sentence_labels, sentence_preds in zip(test_label, y_pred): | |
combined_true.extend(test_label) | |
combined_pred.extend(y_pred) | |
for tag in labels: | |
true_binary = [1 if t == tag else 0 for t in combined_true] | |
pred_binary = [1 if p == tag else 0 for p in combined_pred] | |
# Calculate metrics for the tag | |
precision = precision_score(true_binary, pred_binary, average='binary', zero_division=0) | |
recall = recall_score(true_binary, pred_binary, average='binary', zero_division=0) | |
f1_score = fbeta_score(true_binary, pred_binary, beta=1, average='binary', zero_division=0) | |
print(f"Metrics for {tag}:") | |
print(f'Precision : {precision:.3f}') | |
print(f'Recall : {recall:.3f}') | |
print(f'F1 Score : {f1_score:.3f}\n') | |
def plot_confusion_matrix(predictions, labels, folds): | |
matrix = None | |
for i, (test_label_flat, y_pred_flat) in enumerate(predictions): | |
# test_label_flat = list(chain.from_iterable(test_label)) | |
# y_pred_flat = list(chain.from_iterable(y_pred)) | |
# Compute confusion matrix for this fold | |
cm = confusion_matrix(test_label_flat, y_pred_flat, labels=labels) | |
if i == 0: | |
matrix = cm | |
else: | |
matrix += cm | |
matrix = matrix.astype('float') | |
matrix = matrix / folds | |
matrix = matrix / np.sum(matrix, axis=1, keepdims=True) # Normalize | |
plt.figure(figsize=(10, 8)) | |
sns.heatmap(matrix, annot=True, fmt=".2f", cmap='Blues', xticklabels=labels, yticklabels=labels) | |
plt.xlabel('Predicted') | |
plt.ylabel('Actual') | |
plt.title('Normalized Confusion Matrix for NER') | |
plt.show() | |
if __name__ == "__main__": | |
data = load_dataset("conll2003", trust_remote_code=True) | |
d_train = data['train'] | |
d_validation = data['validation'] | |
d_test = data['test'] | |
nltk.download('gazetteers') | |
places=set(gazetteers.words()) | |
people=set(names.words()) | |
countries=set(gazetteers.words('countries.txt')) | |
nationalities=set(gazetteers.words('nationalities.txt')) | |
x_train, y_train = create_data(d_train) | |
x_val, y_val = create_data(d_validation) | |
x_test, y_test = create_data(d_test) | |
all_X_train = np.concatenate((x_train, x_val, x_test)) | |
all_y_train = np.concatenate((y_train, y_val, y_test)) | |
#K-Fold | |
num_fold = 5 | |
kf = KFold(n_splits=num_fold, random_state=42, shuffle=True) | |
indices = np.arange(len(all_X_train)) | |
predictions = [] | |
all_models = [] | |
for i, (train_index, test_index) in enumerate(kf.split(indices)): | |
print(f"Fold {i} Train Length: {len(train_index)} Test Length: {len(test_index)}") | |
# all_folds.append((train_index, test_index))# Standardize the features such that all features contribute equally to the distance metric computation of the SVM | |
X_train = all_X_train[train_index] | |
y_train = all_y_train[train_index] | |
X_test = all_X_train[test_index] | |
y_test = all_y_train[test_index] | |
# scaler = StandardScaler() | |
# Fit only on the training data (i.e. compute mean and std) | |
# X_train = scaler.fit_transform(X_train) | |
# Use the train data fit values to scale val and test | |
# X_train = scaler.transform(X_train) | |
# X_val = scaler.transform(X_val) | |
# X_test = scaler.transform(X_test) | |
model = SVC(random_state = 42, verbose = True) | |
model.fit(X_train, y_train) | |
y_pred_val = model.predict(X_test) | |
print("-------"*6) | |
print(classification_report(y_true=y_test, y_pred=y_pred_val)) | |
print("-------"*6) | |
pickle.dump(model, open(f"ner_svm_{str(i)}.pkl", 'wb')) | |
predictions.append((y_test, y_pred_val)) | |
all_models.append(model) | |
break | |
FOLDS = 5 | |
labels = sorted(model.classes_) | |
evaluate_overall_metrics(predictions, FOLDS) | |
evaluate_per_pos_metrics(predictions, labels) | |
plot_confusion_matrix(predictions, labels, FOLDS) | |