File size: 4,218 Bytes
bf63887 15d7664 b13883d 302bb07 468efae 302bb07 468efae 302bb07 468efae 302bb07 468efae 302bb07 468efae 302bb07 468efae 302bb07 468efae 302bb07 468efae 302bb07 468efae 302bb07 468efae 302bb07 468efae 302bb07 468efae e9ea4f8 468efae e9ea4f8 468efae e9ea4f8 468efae e9ea4f8 468efae e9ea4f8 468efae 302bb07 468efae 302bb07 468efae 302bb07 468efae 302bb07 468efae 302bb07 468efae 302bb07 468efae 302bb07 468efae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import gradio as gr
from langchain_openai import ChatOpenAI
from langchain_openai import TextProcessingAgent
from dspy.agents import Agent # Base class for custom agent
from dspy.utils import spawn_processes # Distributed computing utility
from transformers import pipeline
# Choose model
model_name = "Dolphin-Phi"
# Load the chosen LLM model
llm = pipeline("text-generation", model=Dolphin-Phi)
# DSPy-based prompt generation
from dspy.agents import Agent
from dspy.utils import SentenceSplitter, SentimentAnalyzer, NamedEntityRecognizer
def dspy_generate_agent_prompts(prompt):
"""
Generates prompts for different agents based on the provided prompt and DSPy functionalities.
Args:
prompt (str): The user-provided prompt (e.g., customer reviews).
Returns:
list: A list containing agent-specific prompts.
"""
# 1. Split the prompt into individual sentences
sentences = SentenceSplitter().process(prompt)
# 2. Analyze sentiment for each sentence
sentiment_analyzer = SentimentAnalyzer()
sentiment_labels = []
for sentence in sentences:
sentiment_labels.append(sentiment_analyzer.analyze(sentence))
# 3. Extract named entities related to specific topics
ner = NamedEntityRecognizer(model_name="en_core_web_sm")
extracted_entities = {}
for sentence in sentences:
entities = ner.process(sentence)
for entity in entities:
if entity.label_ in ["FOOD", "ORG", "LOCATION"]: # Customize entity labels based on your needs
extracted_entities.setdefault(entity.label_, []).append(entity.text)
# 4. Craft prompts for each agent
agent_prompts = []
# **Sentiment Analyzer Prompt:**
sentiment_prompt = f"Analyze the sentiment of the following sentences:\n" + "\n".join(sentences)
agent_prompts.append(sentiment_prompt)
# **Topic Extractor Prompt:** (Modify based on your specific topics)
topic_prompt = f"Extract the main topics discussed in the following text, focusing on food, service, and ambiance:\n{prompt}"
agent_prompts.append(topic_prompt)
# **Recommendation Generator Prompt:** (Modify based on your requirements)
positive_count = sum(label == "POSITIVE" for label in sentiment_labels)
negative_count = sum(label == "NEGATIVE" for label in sentiment_labels)
neutral_count = sum(label == "NEUTRAL" for label in sentiment_labels)
topic_mentions = "\n".join(f"{k}: {','.join(v)}" for k, v in extracted_entities.items())
recommendation_prompt = f"""Based on the sentiment analysis (positive: {positive_count}, negative: {negative_count}, neutral: {neutral_count}) and extracted topics ({topic_mentions}), suggest recommendations for the restaurant to improve."""
agent_prompts.append(recommendation_prompt)
return agent_prompts
# Define the main function to be used with Gradio
def generate_outputs(user_prompt):
# 1. Process prompt with langchain (replace with your actual implementation)
processed_prompt = langchain_function(user_prompt) # Replace with your langchain logic
# 2. Generate synthetic data using DSPy's distributed computing capabilities
synthetic_data = generate_synthetic_data_distributed(processed_prompt)
# 3. Combine user prompt and synthetic data
combined_data = f"{user_prompt}\n{synthetic_data}"
# 4. Generate prompts for agents using DSPy
agent_prompts = dspy_generate_agent_prompts(processed_prompt)
# 5. Use the chosen LLM for two of the prompts
output_1 = llm(agent_prompts[0], max_length=100)[0]["generated_text"]
output_2 = llm(agent_prompts[1], max_length=100)[0]["generated_text"]
# 6. Produce outputs with Langchain or DSPy (replace with your actual implementation)
report, recommendations, visualization = produce_outputs(combined_data)
return report, recommendations, visualization
# Create the Gradio interface
gr.Interface(
fn=generate_outputs,
inputs=gr.Textbox(label="Enter a prompt"),
outputs=["textbox", "textbox", "image"],
title="Multi-Agent Prompt Processor",
description="Processes a prompt using Langchain, DSPy, and a chosen Hugging Face LLM to generate diverse outputs.",
).launch()
|