Somnath3570's picture
Create app.py
badd206 verified
import streamlit as st
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px
import numpy as np
import xgboost as xgb
import os
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
# Set page configuration at the very top
st.set_page_config(page_title="Healthcare Dashboard", layout="wide", page_icon="πŸ’‘")
# Define human-readable labels for prediction outcomes
OUTCOME_MAP = {
0: "Patient recovered and went home",
1: "Transferred to another hospital or care center",
2: "Transferred to a rehab center",
3: "Left the hospital early without approval",
4: "Passed away or had a very serious event",
}
# Function to load the model
def load_model():
try:
model = xgb.XGBClassifier()
model.load_model("xgboost_patient_model.json")
return model
except Exception as e:
st.error(f"Error loading model: {e}")
return None
# Ensure data matches model's feature requirements
def preprocess_data(data, model_features):
try:
data = data.apply(pd.to_numeric, errors='coerce')
missing_features = [f for f in model_features if f not in data.columns]
extra_features = [f for f in data.columns if f not in model_features]
if missing_features:
st.error(f"❌ Missing required features: {missing_features}")
return None
if extra_features:
st.warning(f"⚠️ Extra features in uploaded data: {extra_features}")
return data[model_features]
except Exception as e:
st.error(f"Data preprocessing error: {e}")
return None
# Predict patient outcomes
def predict_outcome(model, data):
if model is None:
return None, None, None, None
actual_target = data.pop("target") if "target" in data.columns else None
try:
model_features = model.get_booster().feature_names
data = preprocess_data(data, model_features)
if data is None:
return None, None, None, None
predictions = model.predict(data)
# Convert numerical predictions to human-readable labels
mapped_predictions = [OUTCOME_MAP[pred] for pred in predictions]
actual_labels = [OUTCOME_MAP[actual] for actual in actual_target] if actual_target is not None else ["N/A"] * len(predictions)
# Debugging information
if actual_target is not None:
correct_predictions = (predictions == actual_target).sum()
total_predictions = len(actual_target)
accuracy = (correct_predictions / total_predictions) * 100
st.write(f"βœ… Correct Predictions: {correct_predictions}/{total_predictions}")
st.write(f"πŸ“Š Model Accuracy: **{accuracy:.2f}%**")
return actual_target, predictions, mapped_predictions, actual_labels
except Exception as e:
st.error(f"Prediction error: {e}")
return None, None, None, None
# Load the data
file_path = 'final_cleaned_patient_data.csv'
try:
df = pd.read_csv(file_path)
except Exception as e:
st.error(f"Error loading data: {e}")
df = pd.DataFrame() # Create empty DataFrame if file doesn't exist
# Sidebar navigation
st.sidebar.title('Healthcare Data Dashboard')
# Team Members Section
st.sidebar.markdown("### πŸ† Team Members:")
team_members = [
"1. R. Sai Somnath",
"2. S. Sreevardhan",
"3. S. Mohammad Basha",
"4. V. Hussain Basha",
"5. P. Charles"
]
for member in team_members:
st.sidebar.text(member)
# Add a divider
st.sidebar.markdown("---")
# Section navigation - Added two new sections
option = st.sidebar.selectbox('Choose a section', [
'Data Overview',
'Data Visualization',
'Interactive Reports',
'Correlation Analysis',
'Data Insights',
'Patient Outcome Prediction',
'Batch Prediction',
'Model Performance'
])
# Apply a Streamlit theme with a dark background for a modern look
st.markdown("""
<style>
h1 { color: #00FFAA; }
.stApp { background-color: #121212; color: #FFFFFF; }
.sidebar .sidebar-content { background-color: #333333; color: #FFFFFF; }
.css-1d391kg { color: #FFFFFF; }
.css-18e3th9 { background-color: #1E1E1E; }
</style>
""", unsafe_allow_html=True)
# Data Overview Section
if option == 'Data Overview':
st.title('πŸ“Š Data Overview')
st.write(df.head())
st.write(f"Dataset Shape: {df.shape}")
st.write(f"Column Names: {df.columns.tolist()}")
st.write("Basic Statistical Overview:")
st.write(df.describe())
if st.checkbox('Show Missing Values'):
st.write(df.isnull().sum())
# Data Visualization Section
elif option == 'Data Visualization':
st.title('πŸ“ˆ Data Visualization')
column = st.selectbox('Select Column for Visualization', df.columns)
plot_type = st.radio('Choose plot type', ['Histogram', 'Boxplot', 'Violin Plot', 'Scatter Plot', 'Line Plot', 'Animated Plot'])
if plot_type == 'Animated Plot':
time_col = st.selectbox('Select Time Column (if applicable)', df.columns)
fig = px.scatter(df, x=column, y=column, animation_frame=time_col, size_max=60)
elif plot_type == 'Histogram':
fig = px.histogram(df, x=column, marginal='box', nbins=30)
elif plot_type == 'Boxplot':
fig = px.box(df, y=column)
elif plot_type == 'Violin Plot':
fig = px.violin(df, y=column, box=True, points='all')
elif plot_type == 'Scatter Plot':
x_col = st.selectbox('Select X axis', df.columns)
fig = px.scatter(df, x=x_col, y=column, color=column)
elif plot_type == 'Line Plot':
x_col = st.selectbox('Select X axis for Line Plot', df.columns)
fig = px.line(df, x=x_col, y=column)
st.plotly_chart(fig)
# Correlation Analysis Section
elif option == 'Correlation Analysis':
st.title('πŸ”Ž Correlation Analysis')
corr_matrix = df.corr()
fig, ax = plt.subplots(figsize=(12, 8))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f', ax=ax)
st.pyplot(fig)
# Interactive Reports Section
elif option == 'Interactive Reports':
st.title('πŸ“‚ Interactive Reports')
st.write("Filter and explore the data.")
selected_columns = st.multiselect('Select columns to display', df.columns)
st.dataframe(df[selected_columns] if selected_columns else df)
st.write("Filter the Data:")
filter_column = st.selectbox('Select column to filter by', df.columns)
filter_value = st.text_input('Enter filter value')
if filter_value:
filtered_data = df[df[filter_column].astype(str).str.contains(filter_value, case=False)]
st.write(filtered_data)
# Download option
csv_data = filtered_data.to_csv(index=False).encode('utf-8')
st.download_button(label='Download Filtered Data as CSV', data=csv_data, file_name='filtered_data.csv', mime='text/csv')
# Data Insights Section
elif option == 'Data Insights':
st.title('🧠 Data Insights')
st.write("Gain insights into the data using various metrics.")
st.write("Total Unique Values per Column:")
st.write(df.nunique())
st.write("Top 5 Frequent Values for Each Column:")
for col in df.columns:
st.write(f"{col}: {df[col].value_counts().head(5)}")
# Patient Outcome Prediction Section
elif option == 'Patient Outcome Prediction':
st.title('πŸ€– Patient Outcome Prediction')
# Load the pre-trained model
model = load_model()
if model is not None:
st.success("βœ… Pre-trained model loaded successfully!")
# Define class descriptions
class_descriptions = {
0: "Patient recovered and went home",
1: "Patient transferred to another hospital",
2: "Patient moved to rehab facility",
3: "Patient left against medical advice",
4: "Patient deceased or serious outcome"
}
# Display target class distribution if target column exists
target_column = 'target'
if target_column in df.columns:
st.subheader("Target Class Distribution")
target_counts = df[target_column].value_counts().reset_index()
target_counts.columns = ['Class', 'Count']
target_counts['Description'] = target_counts['Class'].map(class_descriptions)
st.write(target_counts)
fig = px.pie(target_counts, values='Count', names='Description', title='Target Class Distribution')
st.plotly_chart(fig)
# Prediction interface
st.subheader("Make Predictions")
st.write("Enter values for the features to predict the patient outcome:")
# Create a more interactive UI for prediction with all input values
col1, col2, col3 = st.columns(3)
# Create input fields for all required features
input_values = {}
with col1:
input_values['age'] = st.number_input("Age", min_value=0, max_value=120, value=51)
input_values['gender'] = st.selectbox("Gender", [0, 1], index=1, format_func=lambda x: "Male" if x == 0 else "Female")
input_values['previous_hospitalizations'] = st.number_input("Previous Hospitalizations", min_value=0, value=4)
input_values['heart_rate'] = st.number_input("Heart Rate", min_value=30, max_value=200, value=63)
input_values['respiratory_rate'] = st.number_input("Respiratory Rate", min_value=5, max_value=60, value=16)
input_values['blood_pressure_sys'] = st.number_input("Blood Pressure (Systolic)", min_value=50, max_value=250, value=86)
input_values['blood_pressure_dia'] = st.number_input("Blood Pressure (Diastolic)", min_value=30, max_value=150, value=58)
input_values['temperature'] = st.number_input("Temperature (Β°C)", min_value=35.0, max_value=42.0, value=35.86, step=0.1)
input_values['wbc_count'] = st.number_input("WBC Count", min_value=0.0, max_value=50.0, value=7.15, step=0.1)
input_values['creatinine'] = st.number_input("Creatinine", min_value=0.1, max_value=10.0, value=2.93, step=0.1)
with col2:
input_values['bilirubin'] = st.number_input("Bilirubin", min_value=0.1, max_value=30.0, value=1.72, step=0.1)
input_values['glucose'] = st.number_input("Glucose", min_value=40, max_value=500, value=137)
input_values['bun'] = st.number_input("BUN", min_value=5, max_value=150, value=36)
input_values['pH'] = st.number_input("pH", min_value=6.8, max_value=7.8, value=7.34, step=0.01)
input_values['pao2'] = st.number_input("PaO2", min_value=40, max_value=300, value=72)
input_values['pco2'] = st.number_input("PCO2", min_value=20, max_value=100, value=58)
input_values['fio2'] = st.number_input("FiO2", min_value=0.21, max_value=1.0, value=0.88, step=0.01)
input_values['gcs'] = st.slider("GCS Score", 3, 15, 5)
input_values['comorbidity_index'] = st.slider("Comorbidity Index", 0, 10, 1)
input_values['admission_source'] = st.selectbox("Admission Source", [0, 1, 2, 3], index=1, format_func=lambda x: ["Emergency", "OPD", "Transfer", "Other"][x])
with col3:
input_values['elective_surgery'] = st.selectbox("Elective Surgery", [0, 1], index=1, format_func=lambda x: "No" if x == 0 else "Yes")
input_values['num_medications'] = st.number_input("Number of Medications", min_value=0, value=18)
input_values['charlson_comorbidity_index'] = st.slider("Charlson Comorbidity Index", 0, 15, 1)
input_values['ews_score'] = st.slider("EWS Score", 0, 20, 7)
input_values['severity_score'] = st.slider("Severity Score", 0, 10, 4)
input_values['bed_occupancy_rate'] = st.slider("Bed Occupancy Rate (%)", 50, 100, int(68.67))
input_values['staff_to_patient_ratio'] = st.slider("Staff to Patient Ratio", 0.1, 2.0, 0.99, step=0.1)
input_values['past_icu_admissions'] = st.number_input("Past ICU Admissions", min_value=0, value=2)
input_values['previous_surgery'] = st.selectbox("Previous Surgery", [0, 1], index=1, format_func=lambda x: "No" if x == 0 else "Yes")
input_values['high_risk_treatment'] = st.selectbox("High Risk Treatment", [0, 1], index=1, format_func=lambda x: "No" if x == 0 else "Yes")
input_values['discharge_support'] = st.selectbox("Discharge Support", [0, 1], index=0, format_func=lambda x: "No" if x == 0 else "Yes")
if st.button("Predict Outcome"):
# Define input columns (must match your model's expected input features)
input_columns = [
'age', 'gender', 'previous_hospitalizations', 'heart_rate',
'respiratory_rate', 'blood_pressure_sys', 'blood_pressure_dia',
'temperature', 'wbc_count', 'creatinine', 'bilirubin', 'glucose', 'bun',
'pH', 'pao2', 'pco2', 'fio2', 'gcs', 'comorbidity_index',
'admission_source', 'elective_surgery', 'num_medications',
'charlson_comorbidity_index', 'ews_score', 'severity_score',
'bed_occupancy_rate', 'staff_to_patient_ratio', 'past_icu_admissions',
'previous_surgery', 'high_risk_treatment', 'discharge_support'
]
# Create a sample input for prediction (using a template from your dataset)
if len(df) > 0:
sample_input = pd.DataFrame([{col: 0 for col in input_columns}])
# Update with user inputs
for feature, value in input_values.items():
if feature in sample_input.columns:
sample_input[feature] = value
# Make prediction
try:
prediction = model.predict(sample_input)[0]
prediction_proba = model.predict_proba(sample_input)[0]
# Display prediction
st.subheader("Prediction Result")
st.write(f"Predicted Class: {prediction} - {class_descriptions.get(prediction, 'Unknown')}")
# Display probability for each class
st.write("Prediction Probabilities:")
proba_df = pd.DataFrame({
'Class': [class_descriptions.get(i, f"Class {i}") for i in range(len(prediction_proba))],
'Probability': prediction_proba
})
fig = px.bar(proba_df, x='Class', y='Probability', title='Prediction Probabilities')
st.plotly_chart(fig)
except Exception as e:
st.error(f"Error making prediction: {e}")
else:
st.error("Dataset is empty, cannot create input template.")
else:
st.error("Failed to load model. Please check if 'xgboost_patient_model.json' exists in the current directory.")
# NEW SECTION 1: Batch Prediction
elif option == 'Batch Prediction':
st.title("πŸ₯ Batch Patient Outcome Prediction")
st.write("Upload a CSV file with patient data to predict outcomes for multiple patients at once.")
uploaded_file = st.file_uploader("πŸ“‚ Upload CSV file", type=["csv"])
if uploaded_file is not None:
batch_df = pd.read_csv(uploaded_file)
batch_df = batch_df.dropna().reset_index(drop=True)
st.write("## Preview of Uploaded Data")
st.dataframe(batch_df.head(), use_container_width=True)
model = load_model()
actual_target, predicted_classes, predicted_outcomes, actual_outcomes = predict_outcome(model, batch_df.copy())
if predicted_classes is not None:
st.write("## πŸ₯ Prediction Results")
result_df = pd.DataFrame({
"Patient ID": range(1, len(predicted_classes) + 1),
"Actual Class": actual_target if actual_target is not None else ["N/A"] * len(predicted_classes),
"Predicted Class": predicted_classes,
"Predicted Outcome": predicted_outcomes
})
st.dataframe(result_df, use_container_width=True)
# Add visualization of batch prediction results
st.write("## Prediction Distribution")
results_count = pd.Series(predicted_outcomes).value_counts().reset_index()
results_count.columns = ['Predicted Outcome', 'Count']
fig = px.pie(results_count, values='Count', names='Predicted Outcome',
title='Distribution of Predicted Outcomes')
st.plotly_chart(fig)
# Offer download of results
csv_results = result_df.to_csv(index=False).encode('utf-8')
st.download_button(
label="Download Prediction Results",
data=csv_results,
file_name="patient_predictions.csv",
mime="text/csv"
)
# NEW SECTION 2: Model Performance
elif option == 'Model Performance':
st.title("πŸ“Š Model Performance Analysis")
# Check if data exists and contains target variable
if len(df) > 0 and 'target' in df.columns:
st.write("Analyze the model's performance on the dataset.")
# Split data into features and target
X = df.drop(columns=["target"]) # Features
y = df["target"] # Target
# Split data for testing
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42, stratify=y
)
# Load the model
model = load_model()
if model is not None:
# Make predictions
try:
y_pred = model.predict(X_test)
y_prob = model.predict_proba(X_test)
# Calculate metrics
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
class_report = classification_report(y_test, y_pred, output_dict=True)
# Display metrics
col1, col2 = st.columns(2)
with col1:
st.metric("Model Accuracy", f"{accuracy:.2%}")
# Plot confusion matrix
st.write("### Confusion Matrix")
fig, ax = plt.subplots(figsize=(10, 8))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', ax=ax)
ax.set_xlabel('Predicted Labels')
ax.set_ylabel('True Labels')
st.pyplot(fig)
with col2:
# Plot classification report
st.write("### Classification Report")
report_df = pd.DataFrame(class_report).transpose()
st.dataframe(report_df.style.format({
'precision': '{:.2f}',
'recall': '{:.2f}',
'f1-score': '{:.2f}',
'support': '{:.0f}'
}))
except Exception as e:
st.error(f"Error performing analysis: {e}")
else:
st.error("Model could not be loaded. Please check if the model file exists.")
else:
st.error("Cannot perform model analysis. Dataset is empty or missing target variable.")
st.sidebar.write("Forecasting discharge outcomes for critically ILL patients using machine learning")