Mahabharata_AI / Mahabharata.py
Somnath3570's picture
Create Mahabharata.py
2d6283d verified
import os
import streamlit as st
# Update these imports
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from langchain_community.vectorstores import FAISS
from langchain_core.prompts import PromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
from dotenv import load_dotenv, find_dotenv
load_dotenv(find_dotenv())
DB_FAISS_PATH = "vectorstore/db_faiss"
@st.cache_resource
def get_vectorstore():
embedding_model = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')
db = FAISS.load_local(DB_FAISS_PATH, embedding_model, allow_dangerous_deserialization=True)
return db
def set_custom_prompt(custom_prompt_template):
prompt = PromptTemplate(template=custom_prompt_template, input_variables=["context", "question"])
return prompt
def load_llm(huggingface_repo_id, HF_TOKEN):
llm = HuggingFaceEndpoint(
repo_id=huggingface_repo_id,
task="text-generation", # Add this line
temperature=0.5,
model_kwargs={
"token": HF_TOKEN,
"max_length": 512 # Changed to integer
}
)
return llm
def main():
st.title("Ask Chatbot!")
if 'messages' not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
st.chat_message(message['role']).markdown(message['content'])
prompt = st.chat_input("Pass your prompt here")
if prompt:
st.chat_message('user').markdown(prompt)
st.session_state.messages.append({'role': 'user', 'content': prompt})
CUSTOM_PROMPT_TEMPLATE = """
Use the pieces of information provided in the context to answer user's question.
If you dont know the answer, just say that you dont know, dont try to make up an answer.
Dont provide anything out of the given context
Context: {context}
Question: {question}
Start the answer directly. No small talk please.
"""
HUGGINGFACE_REPO_ID = "mistralai/Mistral-7B-Instruct-v0.3"
HF_TOKEN = os.environ.get("HF_TOKEN")
try:
with st.spinner("Thinking..."): # Add loading indicator
vectorstore = get_vectorstore()
if vectorstore is None:
st.error("Failed to load the vector store")
return
qa_chain = RetrievalQA.from_chain_type(
llm=load_llm(huggingface_repo_id=HUGGINGFACE_REPO_ID, HF_TOKEN=HF_TOKEN),
chain_type="stuff",
retriever=vectorstore.as_retriever(search_kwargs={'k': 3}),
return_source_documents=True,
chain_type_kwargs={'prompt': set_custom_prompt(CUSTOM_PROMPT_TEMPLATE)}
)
response = qa_chain.invoke({'query': prompt})
result = response["result"]
source_documents = response["source_documents"]
# Format source documents more cleanly
source_docs_text = "\n\n**Source Documents:**\n"
for i, doc in enumerate(source_documents, 1):
source_docs_text += f"{i}. Page {doc.metadata.get('page', 'N/A')}: {doc.page_content[:200]}...\n\n"
result_to_show = f"{result}\n{source_docs_text}"
st.chat_message('assistant').markdown(result_to_show)
st.session_state.messages.append({'role': 'assistant', 'content': result_to_show})
except Exception as e:
st.error(f"Error: {str(e)}")
st.error("Please check your HuggingFace token and model access permissions")
if __name__ == "__main__":
main()