Spaces:
No application file
No application file
import os | |
import streamlit as st | |
# Update these imports | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain.chains import RetrievalQA | |
from langchain_community.vectorstores import FAISS | |
from langchain_core.prompts import PromptTemplate | |
from langchain_huggingface import HuggingFaceEndpoint | |
from dotenv import load_dotenv, find_dotenv | |
load_dotenv(find_dotenv()) | |
DB_FAISS_PATH = "vectorstore/db_faiss" | |
def get_vectorstore(): | |
embedding_model = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2') | |
db = FAISS.load_local(DB_FAISS_PATH, embedding_model, allow_dangerous_deserialization=True) | |
return db | |
def set_custom_prompt(custom_prompt_template): | |
prompt = PromptTemplate(template=custom_prompt_template, input_variables=["context", "question"]) | |
return prompt | |
def load_llm(huggingface_repo_id, HF_TOKEN): | |
llm = HuggingFaceEndpoint( | |
repo_id=huggingface_repo_id, | |
task="text-generation", # Add this line | |
temperature=0.5, | |
model_kwargs={ | |
"token": HF_TOKEN, | |
"max_length": 512 # Changed to integer | |
} | |
) | |
return llm | |
def main(): | |
st.title("Ask Chatbot!") | |
if 'messages' not in st.session_state: | |
st.session_state.messages = [] | |
for message in st.session_state.messages: | |
st.chat_message(message['role']).markdown(message['content']) | |
prompt = st.chat_input("Pass your prompt here") | |
if prompt: | |
st.chat_message('user').markdown(prompt) | |
st.session_state.messages.append({'role': 'user', 'content': prompt}) | |
CUSTOM_PROMPT_TEMPLATE = """ | |
Use the pieces of information provided in the context to answer user's question. | |
If you dont know the answer, just say that you dont know, dont try to make up an answer. | |
Dont provide anything out of the given context | |
Context: {context} | |
Question: {question} | |
Start the answer directly. No small talk please. | |
""" | |
HUGGINGFACE_REPO_ID = "mistralai/Mistral-7B-Instruct-v0.3" | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
try: | |
with st.spinner("Thinking..."): # Add loading indicator | |
vectorstore = get_vectorstore() | |
if vectorstore is None: | |
st.error("Failed to load the vector store") | |
return | |
qa_chain = RetrievalQA.from_chain_type( | |
llm=load_llm(huggingface_repo_id=HUGGINGFACE_REPO_ID, HF_TOKEN=HF_TOKEN), | |
chain_type="stuff", | |
retriever=vectorstore.as_retriever(search_kwargs={'k': 3}), | |
return_source_documents=True, | |
chain_type_kwargs={'prompt': set_custom_prompt(CUSTOM_PROMPT_TEMPLATE)} | |
) | |
response = qa_chain.invoke({'query': prompt}) | |
result = response["result"] | |
source_documents = response["source_documents"] | |
# Format source documents more cleanly | |
source_docs_text = "\n\n**Source Documents:**\n" | |
for i, doc in enumerate(source_documents, 1): | |
source_docs_text += f"{i}. Page {doc.metadata.get('page', 'N/A')}: {doc.page_content[:200]}...\n\n" | |
result_to_show = f"{result}\n{source_docs_text}" | |
st.chat_message('assistant').markdown(result_to_show) | |
st.session_state.messages.append({'role': 'assistant', 'content': result_to_show}) | |
except Exception as e: | |
st.error(f"Error: {str(e)}") | |
st.error("Please check your HuggingFace token and model access permissions") | |
if __name__ == "__main__": | |
main() |