Spaces:
Sleeping
Sleeping
import os | |
# Disable OpenMP | |
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' | |
os.environ['OMP_NUM_THREADS'] = '1' | |
os.environ['OPENBLAS_NUM_THREADS'] = '1' | |
os.environ['MKL_NUM_THREADS'] = '1' | |
os.environ['VECLIB_MAXIMUM_THREADS'] = '1' | |
os.environ['NUMEXPR_NUM_THREADS'] = '1' | |
import streamlit as st | |
import torch | |
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import shap | |
from sklearn.preprocessing import MinMaxScaler | |
import plotly.graph_objects as go | |
import io | |
from matplotlib.figure import Figure | |
# Set page config | |
st.set_page_config( | |
page_title="Friction Angle Predictor", | |
page_icon="π", | |
layout="wide" | |
) | |
# Custom CSS to improve the app's appearance | |
st.markdown(""" | |
<style> | |
.stApp { | |
max-width: 1200px; | |
margin: 0 auto; | |
} | |
.main { | |
padding: 2rem; | |
} | |
.stButton>button { | |
width: 100%; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Load the trained model and recreate the architecture | |
class Net(torch.nn.Module): | |
def __init__(self, input_size): | |
super(Net, self).__init__() | |
self.fc1 = torch.nn.Linear(input_size, 64) | |
self.fc2 = torch.nn.Linear(64, 1000) | |
self.fc3 = torch.nn.Linear(1000, 200) | |
self.fc4 = torch.nn.Linear(200, 8) | |
self.fc5 = torch.nn.Linear(8, 1) | |
self.dropout = torch.nn.Dropout(0.2) | |
# Initialize weights | |
self.apply(self._init_weights) | |
def _init_weights(self, module): | |
if isinstance(module, torch.nn.Linear): | |
torch.nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
def forward(self, x): | |
x = torch.nn.functional.relu(self.fc1(x)) | |
x = self.dropout(x) | |
x = torch.nn.functional.relu(self.fc2(x)) | |
x = self.dropout(x) | |
x = torch.nn.functional.relu(self.fc3(x)) | |
x = self.dropout(x) | |
x = torch.nn.functional.relu(self.fc4(x)) | |
x = self.dropout(x) | |
x = self.fc5(x) | |
return x | |
def load_model_and_data(): | |
# Set device and random seeds | |
np.random.seed(32) | |
torch.manual_seed(42) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load data | |
data = pd.read_excel("Data_syw.xlsx") | |
X = data.iloc[:, list(range(1, 17)) + list(range(21, 23))] | |
y = data.iloc[:, 28].values | |
# Calculate correlation and select features | |
correlation_with_target = abs(X.corrwith(pd.Series(y))) | |
selected_features = correlation_with_target[correlation_with_target > 0.1].index | |
X = X[selected_features] | |
# Initialize and fit scalers | |
scaler_X = MinMaxScaler() | |
scaler_y = MinMaxScaler() | |
scaler_X.fit(X) | |
scaler_y.fit(y.reshape(-1, 1)) | |
# Load model | |
model = Net(input_size=len(selected_features)).to(device) | |
model.load_state_dict(torch.load('friction_model.pt')) | |
model.eval() | |
return model, X.columns, scaler_X, scaler_y, device, X | |
def predict_friction(input_values, model, scaler_X, scaler_y, device): | |
# Scale input values | |
input_scaled = scaler_X.transform(input_values) | |
input_tensor = torch.FloatTensor(input_scaled).to(device) | |
# Make prediction | |
with torch.no_grad(): | |
prediction_scaled = model(input_tensor) | |
prediction = scaler_y.inverse_transform(prediction_scaled.cpu().numpy().reshape(-1, 1)) | |
return prediction[0][0] | |
def calculate_shap_values(input_values, model, X, scaler_X, scaler_y, device): | |
def model_predict(X): | |
X_scaled = scaler_X.transform(X) | |
X_tensor = torch.FloatTensor(X_scaled).to(device) | |
with torch.no_grad(): | |
scaled_pred = model(X_tensor).cpu().numpy() | |
return scaler_y.inverse_transform(scaled_pred.reshape(-1, 1)).flatten() | |
try: | |
# Use a smaller background dataset and fewer samples for stability | |
background = shap.kmeans(X.values, k=5) # Reduced from 10 to 5 | |
explainer = shap.KernelExplainer(model_predict, background) | |
shap_values = explainer.shap_values(input_values.values, nsamples=100) # Added nsamples parameter | |
if isinstance(shap_values, list): | |
shap_values = np.array(shap_values[0]) | |
return shap_values[0], explainer.expected_value | |
except Exception as e: | |
st.error(f"Error calculating SHAP values: {str(e)}") | |
# Return dummy values in case of error | |
return np.zeros(len(input_values.columns)), 0.0 | |
def create_waterfall_plot(shap_values, feature_names, base_value, input_data): | |
# Create SHAP explanation object | |
explanation = shap.Explanation( | |
values=shap_values, | |
base_values=base_value, | |
data=input_data, | |
feature_names=list(feature_names) | |
) | |
# Create figure | |
fig = plt.figure(figsize=(12, 8)) | |
shap.plots.waterfall(explanation, show=False) | |
plt.title('Local SHAP Value Contributions') | |
plt.tight_layout() | |
# Save plot to a buffer | |
buf = io.BytesIO() | |
plt.savefig(buf, format='png', bbox_inches='tight', dpi=300) | |
plt.close(fig) | |
buf.seek(0) | |
return buf | |
def main(): | |
st.title("π Friction Angle Predictor") | |
st.write("This app predicts the friction angle based on waste composition and characteristics.") | |
try: | |
# Load model and data | |
model, feature_names, scaler_X, scaler_y, device, X = load_model_and_data() | |
# Create two columns for input | |
col1, col2 = st.columns(2) | |
# Dictionary to store input values | |
input_values = {} | |
# Create input fields for each feature | |
for i, feature in enumerate(feature_names): | |
with col1 if i < len(feature_names)//2 else col2: | |
min_val = float(X[feature].min()) | |
max_val = float(X[feature].max()) | |
mean_val = float(X[feature].mean()) | |
input_values[feature] = st.number_input( | |
f"{feature}", | |
min_value=min_val, | |
max_value=max_val, | |
value=mean_val, | |
help=f"Range: {min_val:.2f} to {max_val:.2f}" | |
) | |
# Create DataFrame from input values | |
input_df = pd.DataFrame([input_values]) | |
if st.button("Predict Friction Angle"): | |
with st.spinner("Calculating prediction and SHAP values..."): | |
# Make prediction | |
prediction = predict_friction(input_df, model, scaler_X, scaler_y, device) | |
# Calculate SHAP values | |
shap_values, base_value = calculate_shap_values(input_df, model, X, scaler_X, scaler_y, device) | |
# Display results | |
st.header("Results") | |
col1, col2 = st.columns(2) | |
with col1: | |
st.metric("Predicted Friction Angle", f"{prediction:.2f}Β°") | |
with col2: | |
st.metric("Base Value", f"{base_value:.2f}Β°") | |
# Create and display waterfall plot | |
st.header("SHAP Waterfall Plot") | |
waterfall_plot = create_waterfall_plot( | |
shap_values=shap_values, | |
feature_names=feature_names, | |
base_value=base_value, | |
input_data=input_df.values[0] | |
) | |
st.image(waterfall_plot) | |
except Exception as e: | |
st.error(f"An error occurred: {str(e)}") | |
st.info("Please try refreshing the page. If the error persists, contact support.") | |
if __name__ == "__main__": | |
main() | |