Sompote's picture
Upload 5 files
5db4d23 verified
import os
# Disable OpenMP
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
os.environ['OMP_NUM_THREADS'] = '1'
os.environ['OPENBLAS_NUM_THREADS'] = '1'
os.environ['MKL_NUM_THREADS'] = '1'
os.environ['VECLIB_MAXIMUM_THREADS'] = '1'
os.environ['NUMEXPR_NUM_THREADS'] = '1'
import streamlit as st
import torch
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import shap
from sklearn.preprocessing import MinMaxScaler
import plotly.graph_objects as go
import io
from matplotlib.figure import Figure
# Set page config
st.set_page_config(
page_title="Friction Angle Predictor",
page_icon="πŸ”„",
layout="wide"
)
# Custom CSS to improve the app's appearance
st.markdown("""
<style>
.stApp {
max-width: 1200px;
margin: 0 auto;
}
.main {
padding: 2rem;
}
.stButton>button {
width: 100%;
}
</style>
""", unsafe_allow_html=True)
# Load the trained model and recreate the architecture
class Net(torch.nn.Module):
def __init__(self, input_size):
super(Net, self).__init__()
self.fc1 = torch.nn.Linear(input_size, 64)
self.fc2 = torch.nn.Linear(64, 1000)
self.fc3 = torch.nn.Linear(1000, 200)
self.fc4 = torch.nn.Linear(200, 8)
self.fc5 = torch.nn.Linear(8, 1)
self.dropout = torch.nn.Dropout(0.2)
# Initialize weights
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, torch.nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
module.bias.data.zero_()
def forward(self, x):
x = torch.nn.functional.relu(self.fc1(x))
x = self.dropout(x)
x = torch.nn.functional.relu(self.fc2(x))
x = self.dropout(x)
x = torch.nn.functional.relu(self.fc3(x))
x = self.dropout(x)
x = torch.nn.functional.relu(self.fc4(x))
x = self.dropout(x)
x = self.fc5(x)
return x
@st.cache_resource
def load_model_and_data():
# Set device and random seeds
np.random.seed(32)
torch.manual_seed(42)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load data
data = pd.read_excel("Data_syw.xlsx")
X = data.iloc[:, list(range(1, 17)) + list(range(21, 23))]
y = data.iloc[:, 28].values
# Calculate correlation and select features
correlation_with_target = abs(X.corrwith(pd.Series(y)))
selected_features = correlation_with_target[correlation_with_target > 0.1].index
X = X[selected_features]
# Initialize and fit scalers
scaler_X = MinMaxScaler()
scaler_y = MinMaxScaler()
scaler_X.fit(X)
scaler_y.fit(y.reshape(-1, 1))
# Load model
model = Net(input_size=len(selected_features)).to(device)
model.load_state_dict(torch.load('friction_model.pt'))
model.eval()
return model, X.columns, scaler_X, scaler_y, device, X
def predict_friction(input_values, model, scaler_X, scaler_y, device):
# Scale input values
input_scaled = scaler_X.transform(input_values)
input_tensor = torch.FloatTensor(input_scaled).to(device)
# Make prediction
with torch.no_grad():
prediction_scaled = model(input_tensor)
prediction = scaler_y.inverse_transform(prediction_scaled.cpu().numpy().reshape(-1, 1))
return prediction[0][0]
def calculate_shap_values(input_values, model, X, scaler_X, scaler_y, device):
def model_predict(X):
X_scaled = scaler_X.transform(X)
X_tensor = torch.FloatTensor(X_scaled).to(device)
with torch.no_grad():
scaled_pred = model(X_tensor).cpu().numpy()
return scaler_y.inverse_transform(scaled_pred.reshape(-1, 1)).flatten()
try:
# Use a smaller background dataset and fewer samples for stability
background = shap.kmeans(X.values, k=5) # Reduced from 10 to 5
explainer = shap.KernelExplainer(model_predict, background)
shap_values = explainer.shap_values(input_values.values, nsamples=100) # Added nsamples parameter
if isinstance(shap_values, list):
shap_values = np.array(shap_values[0])
return shap_values[0], explainer.expected_value
except Exception as e:
st.error(f"Error calculating SHAP values: {str(e)}")
# Return dummy values in case of error
return np.zeros(len(input_values.columns)), 0.0
def create_waterfall_plot(shap_values, feature_names, base_value, input_data):
# Create SHAP explanation object
explanation = shap.Explanation(
values=shap_values,
base_values=base_value,
data=input_data,
feature_names=list(feature_names)
)
# Create figure
fig = plt.figure(figsize=(12, 8))
shap.plots.waterfall(explanation, show=False)
plt.title('Local SHAP Value Contributions')
plt.tight_layout()
# Save plot to a buffer
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', dpi=300)
plt.close(fig)
buf.seek(0)
return buf
def main():
st.title("πŸ”„ Friction Angle Predictor")
st.write("This app predicts the friction angle based on waste composition and characteristics.")
try:
# Load model and data
model, feature_names, scaler_X, scaler_y, device, X = load_model_and_data()
# Create two columns for input
col1, col2 = st.columns(2)
# Dictionary to store input values
input_values = {}
# Create input fields for each feature
for i, feature in enumerate(feature_names):
with col1 if i < len(feature_names)//2 else col2:
min_val = float(X[feature].min())
max_val = float(X[feature].max())
mean_val = float(X[feature].mean())
input_values[feature] = st.number_input(
f"{feature}",
min_value=min_val,
max_value=max_val,
value=mean_val,
help=f"Range: {min_val:.2f} to {max_val:.2f}"
)
# Create DataFrame from input values
input_df = pd.DataFrame([input_values])
if st.button("Predict Friction Angle"):
with st.spinner("Calculating prediction and SHAP values..."):
# Make prediction
prediction = predict_friction(input_df, model, scaler_X, scaler_y, device)
# Calculate SHAP values
shap_values, base_value = calculate_shap_values(input_df, model, X, scaler_X, scaler_y, device)
# Display results
st.header("Results")
col1, col2 = st.columns(2)
with col1:
st.metric("Predicted Friction Angle", f"{prediction:.2f}Β°")
with col2:
st.metric("Base Value", f"{base_value:.2f}Β°")
# Create and display waterfall plot
st.header("SHAP Waterfall Plot")
waterfall_plot = create_waterfall_plot(
shap_values=shap_values,
feature_names=feature_names,
base_value=base_value,
input_data=input_df.values[0]
)
st.image(waterfall_plot)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
st.info("Please try refreshing the page. If the error persists, contact support.")
if __name__ == "__main__":
main()