Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -87,24 +87,75 @@ st.markdown("""
|
|
87 |
border: 1px solid rgba(255,255,255,0.2);
|
88 |
}
|
89 |
|
90 |
-
/* Input
|
91 |
.stSelectbox label, .stSlider label {
|
92 |
-
font-family: 'Inter', sans-serif;
|
93 |
-
font-weight: 600;
|
94 |
-
color: #
|
95 |
-
font-size: 1rem;
|
96 |
-
margin-bottom: 0.5rem;
|
|
|
97 |
}
|
98 |
|
|
|
99 |
.stSelectbox > div > div {
|
100 |
-
background-color: #
|
101 |
-
border-radius:
|
102 |
-
border: 2px solid #e1e8ff;
|
103 |
-
font-family: 'Inter', sans-serif;
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
}
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
.stSlider > div > div {
|
109 |
background-color: #f8f9ff;
|
110 |
border-radius: 15px;
|
@@ -112,6 +163,14 @@ st.markdown("""
|
|
112 |
border: 2px solid #e1e8ff;
|
113 |
}
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
/* Button styling */
|
116 |
.stButton > button {
|
117 |
background: linear-gradient(135deg, #6c5ce7, #fd79a8);
|
@@ -188,9 +247,10 @@ st.markdown("""
|
|
188 |
.footer {
|
189 |
text-align: center;
|
190 |
margin-top: 2rem;
|
191 |
-
color: rgba(255,255,255,0.
|
192 |
font-family: 'Inter', sans-serif;
|
193 |
font-size: 0.9rem;
|
|
|
194 |
}
|
195 |
|
196 |
/* Responsive design */
|
@@ -235,15 +295,22 @@ def load_model():
|
|
235 |
# Prediction function
|
236 |
def predict_solution(diameter, soil_type, high_water, model, le_soil, le_water, le_solution):
|
237 |
try:
|
|
|
|
|
238 |
# Encode inputs
|
239 |
soil_encoded = le_soil.transform([soil_type])[0]
|
240 |
water_encoded = le_water.transform([high_water])[0]
|
241 |
|
242 |
-
# Create feature
|
243 |
-
|
|
|
|
|
|
|
|
|
|
|
244 |
|
245 |
# Make prediction
|
246 |
-
prediction_encoded = model.predict(
|
247 |
prediction = le_solution.inverse_transform([prediction_encoded])[0]
|
248 |
|
249 |
return prediction
|
|
|
87 |
border: 1px solid rgba(255,255,255,0.2);
|
88 |
}
|
89 |
|
90 |
+
/* Input labels - Clean and simple */
|
91 |
.stSelectbox label, .stSlider label {
|
92 |
+
font-family: 'Inter', sans-serif !important;
|
93 |
+
font-weight: 600 !important;
|
94 |
+
color: #2c3e50 !important;
|
95 |
+
font-size: 1rem !important;
|
96 |
+
margin-bottom: 0.5rem !important;
|
97 |
+
display: block !important;
|
98 |
}
|
99 |
|
100 |
+
/* Selectbox styling - Force dark text on light background */
|
101 |
.stSelectbox > div > div {
|
102 |
+
background-color: #ffffff !important;
|
103 |
+
border-radius: 10px !important;
|
104 |
+
border: 2px solid #e1e8ff !important;
|
105 |
+
font-family: 'Inter', sans-serif !important;
|
106 |
+
color: #000000 !important;
|
107 |
+
}
|
108 |
+
|
109 |
+
/* Critical: Force dropdown text to be visible */
|
110 |
+
.stSelectbox [data-baseweb="select"] {
|
111 |
+
background-color: #ffffff !important;
|
112 |
+
}
|
113 |
+
|
114 |
+
.stSelectbox [data-baseweb="select"] > div {
|
115 |
+
background-color: #ffffff !important;
|
116 |
+
color: #000000 !important;
|
117 |
+
font-weight: 600 !important;
|
118 |
+
}
|
119 |
+
|
120 |
+
/* Target the actual button that shows selected value */
|
121 |
+
.stSelectbox [data-baseweb="select"] > div > div[role="button"] {
|
122 |
+
background-color: #ffffff !important;
|
123 |
+
color: #000000 !important;
|
124 |
+
font-weight: 600 !important;
|
125 |
+
border: 2px solid #e1e8ff !important;
|
126 |
+
border-radius: 10px !important;
|
127 |
+
padding: 0.75rem 1rem !important;
|
128 |
+
min-height: 50px !important;
|
129 |
}
|
130 |
|
131 |
+
/* Force text color in the button */
|
132 |
+
.stSelectbox [data-baseweb="select"] > div > div[role="button"] > div {
|
133 |
+
color: #000000 !important;
|
134 |
+
font-weight: 600 !important;
|
135 |
+
font-size: 1rem !important;
|
136 |
+
}
|
137 |
+
|
138 |
+
/* Target dropdown options when opened */
|
139 |
+
.stSelectbox [data-baseweb="select"] [data-baseweb="menu"] {
|
140 |
+
background-color: #ffffff !important;
|
141 |
+
border: 2px solid #e1e8ff !important;
|
142 |
+
border-radius: 10px !important;
|
143 |
+
box-shadow: 0 4px 12px rgba(0,0,0,0.15) !important;
|
144 |
+
}
|
145 |
+
|
146 |
+
.stSelectbox [data-baseweb="select"] [data-baseweb="menu"] > ul > li {
|
147 |
+
background-color: #ffffff !important;
|
148 |
+
color: #000000 !important;
|
149 |
+
font-weight: 600 !important;
|
150 |
+
padding: 0.75rem 1rem !important;
|
151 |
+
}
|
152 |
+
|
153 |
+
.stSelectbox [data-baseweb="select"] [data-baseweb="menu"] > ul > li:hover {
|
154 |
+
background-color: #f8f9ff !important;
|
155 |
+
color: #000000 !important;
|
156 |
+
}
|
157 |
+
|
158 |
+
/* Slider styling */
|
159 |
.stSlider > div > div {
|
160 |
background-color: #f8f9ff;
|
161 |
border-radius: 15px;
|
|
|
163 |
border: 2px solid #e1e8ff;
|
164 |
}
|
165 |
|
166 |
+
/* Input container heading */
|
167 |
+
.input-container h3 {
|
168 |
+
color: #2c3e50 !important;
|
169 |
+
font-weight: 700 !important;
|
170 |
+
font-family: 'Inter', sans-serif !important;
|
171 |
+
margin-bottom: 1.5rem !important;
|
172 |
+
}
|
173 |
+
|
174 |
/* Button styling */
|
175 |
.stButton > button {
|
176 |
background: linear-gradient(135deg, #6c5ce7, #fd79a8);
|
|
|
247 |
.footer {
|
248 |
text-align: center;
|
249 |
margin-top: 2rem;
|
250 |
+
color: rgba(255,255,255,0.95);
|
251 |
font-family: 'Inter', sans-serif;
|
252 |
font-size: 0.9rem;
|
253 |
+
text-shadow: 0 1px 2px rgba(0,0,0,0.1);
|
254 |
}
|
255 |
|
256 |
/* Responsive design */
|
|
|
295 |
# Prediction function
|
296 |
def predict_solution(diameter, soil_type, high_water, model, le_soil, le_water, le_solution):
|
297 |
try:
|
298 |
+
import pandas as pd
|
299 |
+
|
300 |
# Encode inputs
|
301 |
soil_encoded = le_soil.transform([soil_type])[0]
|
302 |
water_encoded = le_water.transform([high_water])[0]
|
303 |
|
304 |
+
# Create feature DataFrame with proper column names to match training
|
305 |
+
feature_data = {
|
306 |
+
'Diameter': [diameter],
|
307 |
+
'soil_encoded': [soil_encoded],
|
308 |
+
'water_encoded': [water_encoded]
|
309 |
+
}
|
310 |
+
features_df = pd.DataFrame(feature_data)
|
311 |
|
312 |
# Make prediction
|
313 |
+
prediction_encoded = model.predict(features_df)[0]
|
314 |
prediction = le_solution.inverse_transform([prediction_encoded])[0]
|
315 |
|
316 |
return prediction
|