Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -10,13 +10,12 @@ import os
|
|
10 |
from dotenv import load_dotenv
|
11 |
from collections import defaultdict
|
12 |
import time
|
13 |
-
from skimage.metrics import structural_similarity as ssim
|
14 |
|
15 |
# Load environment variables
|
16 |
load_dotenv()
|
17 |
|
18 |
# Define API endpoint from environment variable
|
19 |
-
API_URL = os.getenv("API_URL", "http://
|
20 |
print(f"Using API URL: {API_URL}")
|
21 |
DEFAULT_CONFIDENCE = float(os.getenv("DEFAULT_CONFIDENCE_THRESHOLD", "0.25"))
|
22 |
|
@@ -89,159 +88,12 @@ def calculate_movement(prev_center, curr_center, min_movement=10):
|
|
89 |
except Exception as e:
|
90 |
return False
|
91 |
|
92 |
-
def extract_bbox_image(frame, bbox):
|
93 |
-
"""Extract image region from bounding box"""
|
94 |
-
try:
|
95 |
-
if frame is None or len(bbox) != 4:
|
96 |
-
return None
|
97 |
-
|
98 |
-
# Convert bbox to integers and ensure valid coordinates
|
99 |
-
x1, y1, x2, y2 = map(int, bbox)
|
100 |
-
|
101 |
-
# Handle different bbox formats
|
102 |
-
if x2 < x1 or y2 < y1: # If it's x,y,w,h format
|
103 |
-
x1, y1, w, h = bbox
|
104 |
-
x2, y2 = x1 + w, y1 + h
|
105 |
-
|
106 |
-
# Ensure coordinates are within frame bounds
|
107 |
-
h, w = frame.shape[:2]
|
108 |
-
x1 = max(0, min(x1, w-1))
|
109 |
-
y1 = max(0, min(y1, h-1))
|
110 |
-
x2 = max(x1+1, min(x2, w))
|
111 |
-
y2 = max(y1+1, min(y2, h))
|
112 |
-
|
113 |
-
# Extract region
|
114 |
-
bbox_img = frame[y1:y2, x1:x2]
|
115 |
-
|
116 |
-
# Resize to standard size for comparison (64x64)
|
117 |
-
if bbox_img.size > 0:
|
118 |
-
bbox_img = cv2.resize(bbox_img, (64, 64))
|
119 |
-
return bbox_img
|
120 |
-
return None
|
121 |
-
except Exception as e:
|
122 |
-
return None
|
123 |
-
|
124 |
-
def calculate_histogram_similarity(img1, img2):
|
125 |
-
"""Calculate histogram-based similarity between two images"""
|
126 |
-
try:
|
127 |
-
if img1 is None or img2 is None:
|
128 |
-
return 0.0
|
129 |
-
|
130 |
-
# Convert to HSV for better color comparison
|
131 |
-
hsv1 = cv2.cvtColor(img1, cv2.COLOR_BGR2HSV)
|
132 |
-
hsv2 = cv2.cvtColor(img2, cv2.COLOR_BGR2HSV)
|
133 |
-
|
134 |
-
# Calculate histograms
|
135 |
-
hist1 = cv2.calcHist([hsv1], [0, 1, 2], None, [50, 60, 60], [0, 180, 0, 256, 0, 256])
|
136 |
-
hist2 = cv2.calcHist([hsv2], [0, 1, 2], None, [50, 60, 60], [0, 180, 0, 256, 0, 256])
|
137 |
-
|
138 |
-
# Compare histograms using correlation
|
139 |
-
correlation = cv2.compareHist(hist1, hist2, cv2.HISTCMP_CORREL)
|
140 |
-
|
141 |
-
# Normalize to 0-1 range
|
142 |
-
return max(0, correlation)
|
143 |
-
except Exception as e:
|
144 |
-
return 0.0
|
145 |
-
|
146 |
-
def calculate_ssim_similarity(img1, img2):
|
147 |
-
"""Calculate Structural Similarity Index (SSIM) between two images"""
|
148 |
-
try:
|
149 |
-
if img1 is None or img2 is None:
|
150 |
-
return 0.0
|
151 |
-
|
152 |
-
# Convert to grayscale
|
153 |
-
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
|
154 |
-
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
|
155 |
-
|
156 |
-
# Calculate SSIM
|
157 |
-
similarity_index = ssim(gray1, gray2)
|
158 |
-
|
159 |
-
# Normalize to 0-1 range (SSIM can be negative)
|
160 |
-
return max(0, (similarity_index + 1) / 2)
|
161 |
-
except Exception as e:
|
162 |
-
return 0.0
|
163 |
-
|
164 |
-
def calculate_feature_similarity(img1, img2):
|
165 |
-
"""Calculate feature-based similarity using ORB features"""
|
166 |
-
try:
|
167 |
-
if img1 is None or img2 is None:
|
168 |
-
return 0.0
|
169 |
-
|
170 |
-
# Convert to grayscale
|
171 |
-
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
|
172 |
-
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
|
173 |
-
|
174 |
-
# Initialize ORB detector
|
175 |
-
orb = cv2.ORB_create(nfeatures=50)
|
176 |
-
|
177 |
-
# Find keypoints and descriptors
|
178 |
-
kp1, des1 = orb.detectAndCompute(gray1, None)
|
179 |
-
kp2, des2 = orb.detectAndCompute(gray2, None)
|
180 |
-
|
181 |
-
if des1 is None or des2 is None or len(des1) < 5 or len(des2) < 5:
|
182 |
-
return 0.0
|
183 |
-
|
184 |
-
# Match features
|
185 |
-
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
|
186 |
-
matches = bf.match(des1, des2)
|
187 |
-
|
188 |
-
# Calculate similarity based on good matches
|
189 |
-
if len(matches) > 0:
|
190 |
-
# Sort matches by distance
|
191 |
-
matches = sorted(matches, key=lambda x: x.distance)
|
192 |
-
good_matches = [m for m in matches if m.distance < 50] # Threshold for good matches
|
193 |
-
|
194 |
-
# Similarity based on ratio of good matches
|
195 |
-
similarity = len(good_matches) / max(len(kp1), len(kp2))
|
196 |
-
return min(1.0, similarity)
|
197 |
-
|
198 |
-
return 0.0
|
199 |
-
except Exception as e:
|
200 |
-
return 0.0
|
201 |
-
|
202 |
-
def calculate_enhanced_bbox_similarity(bbox1, bbox2, frame1=None, frame2=None):
|
203 |
-
"""Enhanced similarity calculation combining geometric and visual features"""
|
204 |
-
try:
|
205 |
-
# Geometric similarity (IoU + distance) - 40% weight
|
206 |
-
geometric_similarity = calculate_bbox_similarity(bbox1, bbox2)
|
207 |
-
|
208 |
-
# If no frames provided, use only geometric similarity
|
209 |
-
if frame1 is None or frame2 is None:
|
210 |
-
return geometric_similarity
|
211 |
-
|
212 |
-
# Extract image regions from bounding boxes
|
213 |
-
img1 = extract_bbox_image(frame1, bbox1)
|
214 |
-
img2 = extract_bbox_image(frame2, bbox2)
|
215 |
-
|
216 |
-
if img1 is None or img2 is None:
|
217 |
-
return geometric_similarity
|
218 |
-
|
219 |
-
# Visual similarity components
|
220 |
-
hist_similarity = calculate_histogram_similarity(img1, img2) # Color similarity
|
221 |
-
ssim_similarity = calculate_ssim_similarity(img1, img2) # Structural similarity
|
222 |
-
feature_similarity = calculate_feature_similarity(img1, img2) # Feature similarity
|
223 |
-
|
224 |
-
# Combine all similarities with weights
|
225 |
-
final_similarity = (
|
226 |
-
geometric_similarity * 0.4 + # Geometric (IoU + distance)
|
227 |
-
hist_similarity * 0.25 + # Color histogram
|
228 |
-
ssim_similarity * 0.25 + # Structural similarity
|
229 |
-
feature_similarity * 0.1 # Feature matching
|
230 |
-
)
|
231 |
-
|
232 |
-
return min(1.0, final_similarity)
|
233 |
-
|
234 |
-
except Exception as e:
|
235 |
-
return calculate_bbox_similarity(bbox1, bbox2) # Fallback to geometric only
|
236 |
-
|
237 |
class TrackedObject:
|
238 |
def __init__(self, obj_id, obj_class, bbox):
|
239 |
self.id = obj_id
|
240 |
self.class_name = obj_class
|
241 |
-
self.alternative_classes = set() # Track alternative classes (e.g., person when primary is motorcycle)
|
242 |
self.trajectory = [] # List of center points
|
243 |
self.bboxes = [] # List of bounding boxes
|
244 |
-
self.frame_images = [] # Store recent frame images for visual comparison
|
245 |
self.counted = False
|
246 |
self.last_seen = 0 # Frame number when last seen
|
247 |
self.first_seen = 0 # Frame number when first seen
|
@@ -251,42 +103,16 @@ class TrackedObject:
|
|
251 |
self.similarity_scores = [] # Track similarity scores over time
|
252 |
self.add_detection(bbox)
|
253 |
|
254 |
-
def
|
255 |
-
"""Update object class, handling motorcycle+person combinations"""
|
256 |
-
# Prioritize motorcycle over person (motorcycle with rider)
|
257 |
-
if self.class_name == 'person' and new_class == 'motorcycle':
|
258 |
-
self.alternative_classes.add(self.class_name)
|
259 |
-
self.class_name = new_class
|
260 |
-
elif self.class_name == 'motorcycle' and new_class == 'person':
|
261 |
-
self.alternative_classes.add(new_class)
|
262 |
-
# Keep motorcycle as primary class
|
263 |
-
elif new_class != self.class_name:
|
264 |
-
# Different class detected, add to alternatives
|
265 |
-
self.alternative_classes.add(new_class)
|
266 |
-
|
267 |
-
def get_primary_class(self):
|
268 |
-
"""Get the primary class for counting purposes"""
|
269 |
-
# Always prioritize motorcycle if it's been detected
|
270 |
-
if 'motorcycle' in [self.class_name] or 'motorcycle' in self.alternative_classes:
|
271 |
-
return 'motorcycle'
|
272 |
-
return self.class_name
|
273 |
-
|
274 |
-
def add_detection(self, bbox, frame_image=None):
|
275 |
try:
|
276 |
center = get_box_center(bbox)
|
277 |
if center is not None:
|
278 |
self.trajectory.append(center)
|
279 |
self.bboxes.append(bbox)
|
280 |
-
|
281 |
-
# Store frame image for visual comparison
|
282 |
-
if frame_image is not None:
|
283 |
-
self.frame_images.append(frame_image.copy())
|
284 |
-
|
285 |
# Keep only recent history to prevent memory issues
|
286 |
if len(self.trajectory) > 50:
|
287 |
self.trajectory = self.trajectory[-25:]
|
288 |
self.bboxes = self.bboxes[-25:]
|
289 |
-
self.frame_images = self.frame_images[-25:] if self.frame_images else []
|
290 |
except Exception as e:
|
291 |
pass
|
292 |
|
@@ -303,71 +129,32 @@ class TrackedObject:
|
|
303 |
if is_in_red_zone:
|
304 |
if self.red_zone_entry_frame is None:
|
305 |
self.red_zone_entry_frame = frame_number
|
306 |
-
# Mark as entered red zone immediately when first detected
|
307 |
-
return "entered"
|
308 |
self.frames_in_red_zone += 1
|
309 |
|
310 |
-
# Check if warning should be triggered
|
311 |
-
if self.frames_in_red_zone >
|
312 |
self.warning_triggered = True
|
313 |
-
return
|
314 |
else:
|
315 |
# Object left red zone, reset counters
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
self.red_zone_entry_frame = None
|
320 |
-
self.warning_triggered = False
|
321 |
-
return "exited"
|
322 |
|
323 |
-
return
|
324 |
|
325 |
-
def get_similarity_with(self, other_bbox,
|
326 |
-
"""Calculate
|
327 |
if len(self.bboxes) == 0:
|
328 |
return 0.0
|
329 |
|
330 |
current_bbox = self.bboxes[-1]
|
331 |
-
|
332 |
-
# Get the most recent frame image for comparison
|
333 |
-
previous_frame = self.frame_images[-1] if self.frame_images else None
|
334 |
-
|
335 |
-
# Use enhanced similarity calculation with visual comparison
|
336 |
-
similarity = calculate_enhanced_bbox_similarity(
|
337 |
-
current_bbox,
|
338 |
-
other_bbox,
|
339 |
-
previous_frame,
|
340 |
-
current_frame
|
341 |
-
)
|
342 |
-
|
343 |
-
# Store similarity score for debugging
|
344 |
-
self.similarity_scores.append({
|
345 |
-
'frame': state.frame_count,
|
346 |
-
'similarity': similarity,
|
347 |
-
'bbox': other_bbox,
|
348 |
-
'method': 'enhanced' if (previous_frame is not None and current_frame is not None) else 'geometric'
|
349 |
-
})
|
350 |
-
|
351 |
-
# Keep only recent similarity scores to prevent memory issues
|
352 |
-
if len(self.similarity_scores) > 20:
|
353 |
-
self.similarity_scores = self.similarity_scores[-10:]
|
354 |
-
|
355 |
-
return similarity
|
356 |
|
357 |
-
def is_similar_object(obj1, obj2, similarity_threshold=0.
|
358 |
"""Check if two objects are similar based on class, position and bounding box similarity"""
|
359 |
try:
|
360 |
-
|
361 |
-
class1, class2 = obj1['class'], obj2['class']
|
362 |
-
|
363 |
-
# Check if classes are compatible (same class or motorcycle+person combination)
|
364 |
-
compatible_classes = (
|
365 |
-
class1 == class2 or # Same class
|
366 |
-
(class1 == 'motorcycle' and class2 == 'person') or # Person on motorcycle
|
367 |
-
(class1 == 'person' and class2 == 'motorcycle') # Motorcycle with person
|
368 |
-
)
|
369 |
-
|
370 |
-
if not compatible_classes:
|
371 |
return False
|
372 |
|
373 |
box1 = obj1['bbox']
|
@@ -386,11 +173,6 @@ def is_similar_object(obj1, obj2, similarity_threshold=0.35):
|
|
386 |
bbox2 = [box2[0], box2[1], box2[0] + box2[2], box2[1] + box2[3]]
|
387 |
|
388 |
similarity = calculate_bbox_similarity(bbox1, bbox2)
|
389 |
-
|
390 |
-
# Use lower threshold for motorcycle+person combinations
|
391 |
-
if class1 != class2 and ('motorcycle' in [class1, class2] and 'person' in [class1, class2]):
|
392 |
-
return similarity > (similarity_threshold * 0.7) # 30% more lenient for cross-class
|
393 |
-
|
394 |
return similarity > similarity_threshold
|
395 |
return False
|
396 |
except Exception as e:
|
@@ -415,12 +197,7 @@ class State:
|
|
415 |
self.red_zone_passed_objects = defaultdict(int) # Objects that passed through red zone
|
416 |
self.red_zone_warnings = [] # Store warning messages
|
417 |
self.time_window = 10 # Configurable time window for similarity comparison
|
418 |
-
self.similarity_threshold = 0.
|
419 |
-
self.warning_frame_threshold = 3 # Configurable warning threshold (frames in red zone)
|
420 |
-
# Enhanced red zone tracking
|
421 |
-
self.red_zone_entered_objects = defaultdict(int) # All objects that entered red zone
|
422 |
-
self.red_zone_current_objects = defaultdict(list) # Objects currently in red zone
|
423 |
-
self.red_zone_exited_objects = defaultdict(int) # Objects that exited red zone
|
424 |
|
425 |
def reset_tracking(self):
|
426 |
"""Reset all tracking data"""
|
@@ -430,10 +207,6 @@ class State:
|
|
430 |
self.frame_count = 0
|
431 |
self.red_zone_passed_objects = defaultdict(int)
|
432 |
self.red_zone_warnings = []
|
433 |
-
# Reset enhanced red zone tracking
|
434 |
-
self.red_zone_entered_objects = defaultdict(int)
|
435 |
-
self.red_zone_current_objects = defaultdict(list)
|
436 |
-
self.red_zone_exited_objects = defaultdict(int)
|
437 |
|
438 |
state = State()
|
439 |
|
@@ -718,15 +491,12 @@ def get_segment_index(choice_text):
|
|
718 |
except:
|
719 |
return -1
|
720 |
|
721 |
-
def update_object_tracking(objects_in_area
|
722 |
"""Update object tracking with new detections"""
|
723 |
try:
|
724 |
current_tracked = set() # Keep track of objects seen in this frame
|
725 |
current_warnings = [] # Collect warnings for this frame
|
726 |
|
727 |
-
# Clear current objects list for this frame
|
728 |
-
state.red_zone_current_objects = defaultdict(list)
|
729 |
-
|
730 |
# Match new detections with existing tracked objects
|
731 |
for obj in objects_in_area:
|
732 |
try:
|
@@ -740,97 +510,57 @@ def update_object_tracking(objects_in_area, current_frame=None):
|
|
740 |
best_match_id = None
|
741 |
best_similarity = 0.0
|
742 |
|
743 |
-
# Try to match with existing tracked objects using
|
744 |
for obj_id, tracked in state.tracked_objects.items():
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
temp_obj2 = {'class': obj_class, 'bbox': bbox}
|
750 |
-
|
751 |
-
if is_similar_object(temp_obj1, temp_obj2, state.similarity_threshold):
|
752 |
-
# Use enhanced similarity calculation with visual comparison
|
753 |
-
similarity = tracked.get_similarity_with(bbox, current_frame)
|
754 |
|
755 |
# Use the best match above threshold
|
756 |
-
if similarity > best_similarity:
|
757 |
best_similarity = similarity
|
758 |
best_match_id = obj_id
|
759 |
|
760 |
# If good match found, update existing object
|
761 |
if best_match_id is not None:
|
762 |
tracked = state.tracked_objects[best_match_id]
|
763 |
-
tracked.add_detection(bbox
|
764 |
-
tracked.update_class(obj_class) # Update class information
|
765 |
tracked.last_seen = state.frame_count
|
766 |
current_tracked.add(best_match_id)
|
767 |
matched = True
|
768 |
|
769 |
-
# Check red zone status and
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
if zone_status == "entered":
|
774 |
-
# Object just entered red zone - count it immediately
|
775 |
-
if not tracked.counted:
|
776 |
-
tracked.counted = True
|
777 |
-
state.red_zone_entered_objects[primary_class] += 1
|
778 |
-
|
779 |
-
elif zone_status == "warning":
|
780 |
-
warning_msg = f"⚠️ WARNING: {primary_class} (ID: {tracked.id}) has been in red zone for {tracked.frames_in_red_zone} frames!"
|
781 |
current_warnings.append(warning_msg)
|
782 |
state.red_zone_warnings.append({
|
783 |
'frame': state.frame_count,
|
784 |
'object_id': tracked.id,
|
785 |
-
'class':
|
786 |
'frames_in_zone': tracked.frames_in_red_zone,
|
787 |
'message': warning_msg
|
788 |
})
|
789 |
-
|
790 |
-
elif zone_status == "exited":
|
791 |
-
# Object exited red zone
|
792 |
-
state.red_zone_exited_objects[primary_class] += 1
|
793 |
|
794 |
-
#
|
795 |
-
if is_in_red_zone:
|
796 |
-
|
797 |
-
if tracked.
|
798 |
-
|
799 |
-
|
800 |
-
state.red_zone_current_objects[primary_class].append({
|
801 |
-
'id': tracked.id,
|
802 |
-
'frames_in_zone': tracked.frames_in_red_zone,
|
803 |
-
'entry_frame': tracked.red_zone_entry_frame,
|
804 |
-
'display_class': display_class
|
805 |
-
})
|
806 |
|
807 |
# If no match found, create new tracked object
|
808 |
if not matched:
|
809 |
new_obj = TrackedObject(state.next_obj_id, obj_class, bbox)
|
810 |
-
new_obj.add_detection(bbox, current_frame) # Pass current frame
|
811 |
new_obj.last_seen = state.frame_count
|
812 |
new_obj.first_seen = state.frame_count
|
813 |
state.tracked_objects[state.next_obj_id] = new_obj
|
814 |
current_tracked.add(state.next_obj_id)
|
|
|
815 |
|
816 |
# Check red zone status for new object
|
817 |
-
|
818 |
-
primary_class = new_obj.get_primary_class()
|
819 |
-
|
820 |
-
if zone_status == "entered":
|
821 |
-
# New object entered red zone immediately
|
822 |
-
new_obj.counted = True
|
823 |
-
state.red_zone_entered_objects[primary_class] += 1
|
824 |
-
|
825 |
-
# Add to current objects in red zone
|
826 |
-
state.red_zone_current_objects[primary_class].append({
|
827 |
-
'id': new_obj.id,
|
828 |
-
'frames_in_zone': new_obj.frames_in_red_zone,
|
829 |
-
'entry_frame': new_obj.red_zone_entry_frame,
|
830 |
-
'display_class': primary_class
|
831 |
-
})
|
832 |
-
|
833 |
-
state.next_obj_id += 1
|
834 |
|
835 |
except Exception as e:
|
836 |
continue
|
@@ -839,21 +569,13 @@ def update_object_tracking(objects_in_area, current_frame=None):
|
|
839 |
for obj_id, tracked in state.tracked_objects.items():
|
840 |
if obj_id not in current_tracked:
|
841 |
# Object not seen in current frame, update red zone status
|
842 |
-
|
843 |
-
if zone_status == "exited":
|
844 |
-
# Object exited red zone
|
845 |
-
primary_class = tracked.get_primary_class()
|
846 |
-
state.red_zone_exited_objects[primary_class] += 1
|
847 |
|
848 |
# Remove objects that haven't been seen for a while
|
849 |
if state.frame_count > state.time_window:
|
850 |
to_remove = []
|
851 |
for obj_id, tracked in state.tracked_objects.items():
|
852 |
if state.frame_count - tracked.last_seen > state.time_window * 2: # Remove after 2x time window
|
853 |
-
# If object was in red zone when lost, count as exited
|
854 |
-
if tracked.red_zone_entry_frame is not None:
|
855 |
-
primary_class = tracked.get_primary_class()
|
856 |
-
state.red_zone_exited_objects[primary_class] += 1
|
857 |
to_remove.append(obj_id)
|
858 |
|
859 |
for obj_id in to_remove:
|
@@ -867,73 +589,36 @@ def update_object_tracking(objects_in_area, current_frame=None):
|
|
867 |
print(f"Error in update_object_tracking: {str(e)}")
|
868 |
|
869 |
def get_red_zone_summary():
|
870 |
-
"""Generate
|
871 |
summary = []
|
872 |
|
873 |
-
|
874 |
-
|
875 |
-
|
876 |
-
|
877 |
-
# Objects that entered red zone (all time)
|
878 |
-
if state.red_zone_entered_objects:
|
879 |
-
summary.append("\n📊 OBJECTS ENTERED RED ZONE:")
|
880 |
-
total_entered = sum(state.red_zone_entered_objects.values())
|
881 |
-
summary.append(f"Total objects entered: {total_entered}")
|
882 |
|
883 |
-
for obj_class, count in sorted(state.
|
884 |
summary.append(f" • {obj_class}: {count}")
|
885 |
-
else:
|
886 |
-
summary.append("\n📊 OBJECTS ENTERED RED ZONE:")
|
887 |
-
summary.append("No objects have entered the red zone yet")
|
888 |
|
889 |
-
#
|
890 |
-
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
for obj_class, objects in sorted(state.red_zone_current_objects.items()):
|
895 |
-
if objects:
|
896 |
-
summary.append(f" {obj_class} ({len(objects)} objects):")
|
897 |
-
for obj_info in objects:
|
898 |
-
display_class = obj_info.get('display_class', obj_class)
|
899 |
-
summary.append(f" - ID {obj_info['id']}: {obj_info['frames_in_zone']} frames (entered: frame {obj_info['entry_frame']}) [{display_class}]")
|
900 |
-
else:
|
901 |
-
summary.append("\n🚨 CURRENTLY IN RED ZONE:")
|
902 |
-
summary.append("No objects currently in red zone")
|
903 |
|
904 |
-
|
905 |
-
|
906 |
-
|
907 |
-
|
908 |
-
summary.append(f"Total objects exited: {total_exited}")
|
909 |
-
|
910 |
-
for obj_class, count in sorted(state.red_zone_exited_objects.items()):
|
911 |
-
summary.append(f" • {obj_class}: {count}")
|
912 |
|
913 |
-
#
|
914 |
-
recent_warnings = [w for w in state.red_zone_warnings if state.frame_count - w['frame'] <=
|
915 |
if recent_warnings:
|
916 |
summary.append("\n⚠️ RECENT WARNINGS:")
|
917 |
-
for warning in recent_warnings[-
|
918 |
-
summary.append(f" • Frame {warning['frame']}: {warning['
|
919 |
|
920 |
-
|
921 |
-
summary.append(f"\n📈 STATISTICS:")
|
922 |
-
summary.append(f" • Total unique objects tracked: {len(state.tracked_objects)}")
|
923 |
-
summary.append(f" • Active warnings: {len([w for w in state.red_zone_warnings if state.frame_count - w['frame'] <= 5])}")
|
924 |
-
summary.append(f" • Frame: {state.frame_count}")
|
925 |
-
summary.append(f" • Warning threshold: {state.warning_frame_threshold} frames")
|
926 |
-
|
927 |
-
# Show object combination info
|
928 |
-
combined_objects = 0
|
929 |
-
for tracked in state.tracked_objects.values():
|
930 |
-
if tracked.alternative_classes:
|
931 |
-
combined_objects += 1
|
932 |
-
|
933 |
-
if combined_objects > 0:
|
934 |
-
summary.append(f" • Objects with combined detections: {combined_objects}")
|
935 |
-
|
936 |
-
return "\n".join(summary)
|
937 |
|
938 |
def process_frame(frame, confidence):
|
939 |
"""Process a video frame using cached protection area"""
|
@@ -1017,7 +702,7 @@ def process_frame(frame, confidence):
|
|
1017 |
|
1018 |
# Update object tracking
|
1019 |
state.frame_count += 1
|
1020 |
-
update_object_tracking(objects_in_area
|
1021 |
|
1022 |
# Cache detections for next frame
|
1023 |
state.previous_detections = objects_in_area
|
@@ -1128,59 +813,18 @@ def generate_final_summary():
|
|
1128 |
summary_lines.append(f" • Total frames processed: {state.frame_count}")
|
1129 |
summary_lines.append(f" • Time window used: {state.time_window} frames")
|
1130 |
summary_lines.append(f" • Similarity threshold: {state.similarity_threshold:.2f}")
|
1131 |
-
summary_lines.append(f" • Warning threshold: {state.warning_frame_threshold} frames")
|
1132 |
|
1133 |
-
#
|
1134 |
-
if state.
|
1135 |
-
summary_lines.append(f"\n🔴 RED ZONE
|
1136 |
-
|
1137 |
-
|
1138 |
-
|
1139 |
-
summary_lines.append(f" • Total objects entered red zone: {total_entered}")
|
1140 |
-
summary_lines.append(f" • Total objects exited red zone: {total_exited}")
|
1141 |
-
summary_lines.append(f" • Objects still in red zone: {total_entered - total_exited}")
|
1142 |
|
1143 |
-
|
1144 |
-
|
1145 |
-
# Combine all object classes that appeared in red zone
|
1146 |
-
all_classes = set(state.red_zone_entered_objects.keys()) | set(state.red_zone_exited_objects.keys())
|
1147 |
-
|
1148 |
-
for obj_class in sorted(all_classes):
|
1149 |
-
entered = state.red_zone_entered_objects.get(obj_class, 0)
|
1150 |
-
exited = state.red_zone_exited_objects.get(obj_class, 0)
|
1151 |
-
still_in = entered - exited
|
1152 |
-
|
1153 |
-
summary_lines.append(f" {obj_class}:")
|
1154 |
-
summary_lines.append(f" - Entered: {entered}")
|
1155 |
-
summary_lines.append(f" - Exited: {exited}")
|
1156 |
-
summary_lines.append(f" - Still in zone: {still_in}")
|
1157 |
else:
|
1158 |
-
summary_lines.append(f"\n🔴 RED ZONE
|
1159 |
-
summary_lines.append(f" • No objects detected
|
1160 |
-
|
1161 |
-
# Object combination analysis
|
1162 |
-
combined_objects = []
|
1163 |
-
motorcycle_person_combinations = 0
|
1164 |
-
|
1165 |
-
for obj_id, tracked in state.tracked_objects.items():
|
1166 |
-
if tracked.alternative_classes:
|
1167 |
-
combo_info = f"ID {obj_id}: {tracked.class_name}"
|
1168 |
-
if tracked.alternative_classes:
|
1169 |
-
combo_info += f" + {', '.join(sorted(tracked.alternative_classes))}"
|
1170 |
-
combined_objects.append(combo_info)
|
1171 |
-
|
1172 |
-
# Count motorcycle+person combinations specifically
|
1173 |
-
if (tracked.class_name == 'motorcycle' and 'person' in tracked.alternative_classes) or \
|
1174 |
-
(tracked.class_name == 'person' and 'motorcycle' in tracked.alternative_classes):
|
1175 |
-
motorcycle_person_combinations += 1
|
1176 |
-
|
1177 |
-
if combined_objects:
|
1178 |
-
summary_lines.append(f"\n🔗 OBJECT COMBINATIONS DETECTED:")
|
1179 |
-
summary_lines.append(f" • Total combined detections: {len(combined_objects)}")
|
1180 |
-
summary_lines.append(f" • Motorcycle+Person combinations: {motorcycle_person_combinations}")
|
1181 |
-
summary_lines.append(f" • Details:")
|
1182 |
-
for combo in combined_objects:
|
1183 |
-
summary_lines.append(f" - {combo}")
|
1184 |
|
1185 |
# Warning summary
|
1186 |
if state.red_zone_warnings:
|
@@ -1195,14 +839,14 @@ def generate_final_summary():
|
|
1195 |
for obj_class, count in sorted(warning_by_class.items()):
|
1196 |
summary_lines.append(f" - {obj_class}: {count} warnings")
|
1197 |
|
1198 |
-
# Show
|
1199 |
if len(state.red_zone_warnings) > 0:
|
1200 |
-
summary_lines.append(f"\n 📋
|
1201 |
-
for warning in state.red_zone_warnings[-
|
1202 |
summary_lines.append(f" - Frame {warning['frame']}: {warning['class']} (ID: {warning['object_id']}) - {warning['frames_in_zone']} frames in zone")
|
1203 |
else:
|
1204 |
summary_lines.append(f"\n⚠️ WARNING SUMMARY:")
|
1205 |
-
summary_lines.append(f" • No warnings generated (no objects stayed in red zone >
|
1206 |
|
1207 |
# Active tracking summary
|
1208 |
total_tracked = len(state.tracked_objects)
|
@@ -1210,17 +854,15 @@ def generate_final_summary():
|
|
1210 |
summary_lines.append(f"\n📈 OBJECT TRACKING SUMMARY:")
|
1211 |
summary_lines.append(f" • Total unique objects tracked: {total_tracked}")
|
1212 |
|
1213 |
-
# Group by
|
1214 |
objects_by_class = defaultdict(int)
|
1215 |
for obj in state.tracked_objects.values():
|
1216 |
-
|
1217 |
-
objects_by_class[primary_class] += 1
|
1218 |
|
1219 |
for obj_class, count in sorted(objects_by_class.items()):
|
1220 |
summary_lines.append(f" - {obj_class}: {count}")
|
1221 |
|
1222 |
summary_lines.append("\n✅ Processing completed successfully!")
|
1223 |
-
summary_lines.append("\nNote: Objects detected as both motorcycle and person are counted as motorcycle (person riding motorcycle)")
|
1224 |
|
1225 |
return "\n".join(summary_lines)
|
1226 |
|
@@ -1253,7 +895,7 @@ def update_selected_segments(selected):
|
|
1253 |
state.selected_segments = selected
|
1254 |
return gr.update()
|
1255 |
|
1256 |
-
def process_video_wrapper(video, confidence=DEFAULT_CONFIDENCE, target_fps=1, time_window=10, similarity_threshold=0.
|
1257 |
"""Wrapper around process_video to handle full-size video processing"""
|
1258 |
if video is None:
|
1259 |
yield None, "Please upload a video"
|
@@ -1263,7 +905,6 @@ def process_video_wrapper(video, confidence=DEFAULT_CONFIDENCE, target_fps=1, ti
|
|
1263 |
state.reset_tracking()
|
1264 |
state.time_window = time_window
|
1265 |
state.similarity_threshold = similarity_threshold
|
1266 |
-
state.warning_frame_threshold = warning_frame_threshold
|
1267 |
|
1268 |
protection_area = []
|
1269 |
if state.selected_segments and state.detected_segments:
|
@@ -1282,7 +923,7 @@ def process_video_wrapper(video, confidence=DEFAULT_CONFIDENCE, target_fps=1, ti
|
|
1282 |
return
|
1283 |
|
1284 |
try:
|
1285 |
-
yield None, f"🚀 Starting video processing...\n⚙️ Time window: {time_window} frames\n⚙️ Similarity threshold: {similarity_threshold:.2f}
|
1286 |
|
1287 |
for frame, status in process_video(video, confidence, target_fps):
|
1288 |
yield frame, status
|
@@ -1290,32 +931,16 @@ def process_video_wrapper(video, confidence=DEFAULT_CONFIDENCE, target_fps=1, ti
|
|
1290 |
except Exception as e:
|
1291 |
yield None, f"Error processing video: {str(e)}"
|
1292 |
|
1293 |
-
#
|
1294 |
with gr.Blocks(title="Enhanced Rail Traffic Monitor") as demo:
|
1295 |
gr.Markdown("""
|
1296 |
# Enhanced Rail Traffic Monitoring System
|
1297 |
|
1298 |
## Features:
|
1299 |
-
- **Smart Object Tracking**: Uses
|
1300 |
-
- **
|
1301 |
-
- **
|
1302 |
-
- **
|
1303 |
-
- **Real-time Status**: Shows objects currently in zone, entered, and exited
|
1304 |
-
- **Configurable Warning System**: Alerts when objects stay in red zone for too long
|
1305 |
-
- **Configurable Parameters**: Adjust time window, similarity threshold, and warning criteria
|
1306 |
-
|
1307 |
-
## Enhanced Similarity Methods:
|
1308 |
-
- **Geometric Similarity** (40%): IoU + center distance
|
1309 |
-
- **Color Histogram** (25%): HSV color distribution comparison
|
1310 |
-
- **Structural Similarity** (25%): SSIM for shape and texture
|
1311 |
-
- **Feature Matching** (10%): ORB keypoint matching
|
1312 |
-
- **Default Threshold**: 0.35 (more lenient for better object matching)
|
1313 |
-
|
1314 |
-
## Red Zone Reporting:
|
1315 |
-
- **Objects Entered**: Total count of all objects that entered the red zone
|
1316 |
-
- **Currently in Zone**: Real-time list of objects currently in the red zone
|
1317 |
-
- **Objects Exited**: Count of objects that have left the red zone
|
1318 |
-
- **Detailed Grouping**: All statistics grouped by object class (train, car, person, etc.)
|
1319 |
|
1320 |
## Setup Instructions:
|
1321 |
|
@@ -1327,16 +952,14 @@ with gr.Blocks(title="Enhanced Rail Traffic Monitor") as demo:
|
|
1327 |
1. Click "Extract Protection Area" to automatically detect rail segments
|
1328 |
|
1329 |
**Processing:**
|
1330 |
-
3. Adjust detection confidence, processing frame rate, time window,
|
1331 |
4. Click "Process Video" to analyze
|
1332 |
|
1333 |
-
The system will show
|
1334 |
-
-
|
1335 |
-
-
|
1336 |
-
-
|
1337 |
-
-
|
1338 |
-
- Configurable warnings for objects staying too long in red zone
|
1339 |
-
- Complete tracking statistics
|
1340 |
""")
|
1341 |
|
1342 |
with gr.Row():
|
@@ -1373,21 +996,12 @@ with gr.Blocks(title="Enhanced Rail Traffic Monitor") as demo:
|
|
1373 |
similarity_threshold_slider = gr.Slider(
|
1374 |
minimum=0.1,
|
1375 |
maximum=0.9,
|
1376 |
-
value=0.
|
1377 |
step=0.05,
|
1378 |
label="Similarity Threshold",
|
1379 |
info="Threshold for considering objects as the same (higher = stricter)"
|
1380 |
)
|
1381 |
-
|
1382 |
-
with gr.Row():
|
1383 |
-
warning_threshold_slider = gr.Slider(
|
1384 |
-
minimum=1,
|
1385 |
-
maximum=20,
|
1386 |
-
value=3,
|
1387 |
-
step=1,
|
1388 |
-
label="Warning Frame Threshold",
|
1389 |
-
info="Number of frames in red zone before triggering warning"
|
1390 |
-
)
|
1391 |
with gr.Column():
|
1392 |
preview_image = gr.Image(
|
1393 |
label="Click to Select Protection Area (Original Size)",
|
@@ -1447,7 +1061,7 @@ with gr.Blocks(title="Enhanced Rail Traffic Monitor") as demo:
|
|
1447 |
|
1448 |
process_btn.click(
|
1449 |
fn=process_video_wrapper,
|
1450 |
-
inputs=[video_input, confidence, fps_slider, time_window_slider, similarity_threshold_slider
|
1451 |
outputs=[video_output, text_output]
|
1452 |
)
|
1453 |
|
|
|
10 |
from dotenv import load_dotenv
|
11 |
from collections import defaultdict
|
12 |
import time
|
|
|
13 |
|
14 |
# Load environment variables
|
15 |
load_dotenv()
|
16 |
|
17 |
# Define API endpoint from environment variable
|
18 |
+
API_URL = os.getenv("API_URL", "http://localhost:8000")
|
19 |
print(f"Using API URL: {API_URL}")
|
20 |
DEFAULT_CONFIDENCE = float(os.getenv("DEFAULT_CONFIDENCE_THRESHOLD", "0.25"))
|
21 |
|
|
|
88 |
except Exception as e:
|
89 |
return False
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
class TrackedObject:
|
92 |
def __init__(self, obj_id, obj_class, bbox):
|
93 |
self.id = obj_id
|
94 |
self.class_name = obj_class
|
|
|
95 |
self.trajectory = [] # List of center points
|
96 |
self.bboxes = [] # List of bounding boxes
|
|
|
97 |
self.counted = False
|
98 |
self.last_seen = 0 # Frame number when last seen
|
99 |
self.first_seen = 0 # Frame number when first seen
|
|
|
103 |
self.similarity_scores = [] # Track similarity scores over time
|
104 |
self.add_detection(bbox)
|
105 |
|
106 |
+
def add_detection(self, bbox):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
try:
|
108 |
center = get_box_center(bbox)
|
109 |
if center is not None:
|
110 |
self.trajectory.append(center)
|
111 |
self.bboxes.append(bbox)
|
|
|
|
|
|
|
|
|
|
|
112 |
# Keep only recent history to prevent memory issues
|
113 |
if len(self.trajectory) > 50:
|
114 |
self.trajectory = self.trajectory[-25:]
|
115 |
self.bboxes = self.bboxes[-25:]
|
|
|
116 |
except Exception as e:
|
117 |
pass
|
118 |
|
|
|
129 |
if is_in_red_zone:
|
130 |
if self.red_zone_entry_frame is None:
|
131 |
self.red_zone_entry_frame = frame_number
|
|
|
|
|
132 |
self.frames_in_red_zone += 1
|
133 |
|
134 |
+
# Check if warning should be triggered
|
135 |
+
if self.frames_in_red_zone > 3 and not self.warning_triggered:
|
136 |
self.warning_triggered = True
|
137 |
+
return True # Return True to indicate warning should be shown
|
138 |
else:
|
139 |
# Object left red zone, reset counters
|
140 |
+
self.frames_in_red_zone = 0
|
141 |
+
self.red_zone_entry_frame = None
|
142 |
+
self.warning_triggered = False
|
|
|
|
|
|
|
143 |
|
144 |
+
return False
|
145 |
|
146 |
+
def get_similarity_with(self, other_bbox, similarity_threshold=0.5):
|
147 |
+
"""Calculate similarity with another bounding box"""
|
148 |
if len(self.bboxes) == 0:
|
149 |
return 0.0
|
150 |
|
151 |
current_bbox = self.bboxes[-1]
|
152 |
+
return calculate_bbox_similarity(current_bbox, other_bbox)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
+
def is_similar_object(obj1, obj2, similarity_threshold=0.6):
|
155 |
"""Check if two objects are similar based on class, position and bounding box similarity"""
|
156 |
try:
|
157 |
+
if obj1['class'] != obj2['class']:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
return False
|
159 |
|
160 |
box1 = obj1['bbox']
|
|
|
173 |
bbox2 = [box2[0], box2[1], box2[0] + box2[2], box2[1] + box2[3]]
|
174 |
|
175 |
similarity = calculate_bbox_similarity(bbox1, bbox2)
|
|
|
|
|
|
|
|
|
|
|
176 |
return similarity > similarity_threshold
|
177 |
return False
|
178 |
except Exception as e:
|
|
|
197 |
self.red_zone_passed_objects = defaultdict(int) # Objects that passed through red zone
|
198 |
self.red_zone_warnings = [] # Store warning messages
|
199 |
self.time_window = 10 # Configurable time window for similarity comparison
|
200 |
+
self.similarity_threshold = 0.6 # Configurable similarity threshold
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
def reset_tracking(self):
|
203 |
"""Reset all tracking data"""
|
|
|
207 |
self.frame_count = 0
|
208 |
self.red_zone_passed_objects = defaultdict(int)
|
209 |
self.red_zone_warnings = []
|
|
|
|
|
|
|
|
|
210 |
|
211 |
state = State()
|
212 |
|
|
|
491 |
except:
|
492 |
return -1
|
493 |
|
494 |
+
def update_object_tracking(objects_in_area):
|
495 |
"""Update object tracking with new detections"""
|
496 |
try:
|
497 |
current_tracked = set() # Keep track of objects seen in this frame
|
498 |
current_warnings = [] # Collect warnings for this frame
|
499 |
|
|
|
|
|
|
|
500 |
# Match new detections with existing tracked objects
|
501 |
for obj in objects_in_area:
|
502 |
try:
|
|
|
510 |
best_match_id = None
|
511 |
best_similarity = 0.0
|
512 |
|
513 |
+
# Try to match with existing tracked objects using similarity method
|
514 |
for obj_id, tracked in state.tracked_objects.items():
|
515 |
+
if tracked.class_name == obj_class:
|
516 |
+
# Check if object was seen recently (within time window)
|
517 |
+
if state.frame_count - tracked.last_seen <= state.time_window:
|
518 |
+
similarity = tracked.get_similarity_with(bbox)
|
|
|
|
|
|
|
|
|
|
|
519 |
|
520 |
# Use the best match above threshold
|
521 |
+
if similarity > state.similarity_threshold and similarity > best_similarity:
|
522 |
best_similarity = similarity
|
523 |
best_match_id = obj_id
|
524 |
|
525 |
# If good match found, update existing object
|
526 |
if best_match_id is not None:
|
527 |
tracked = state.tracked_objects[best_match_id]
|
528 |
+
tracked.add_detection(bbox)
|
|
|
529 |
tracked.last_seen = state.frame_count
|
530 |
current_tracked.add(best_match_id)
|
531 |
matched = True
|
532 |
|
533 |
+
# Check red zone status and warnings
|
534 |
+
warning_triggered = tracked.update_red_zone_status(is_in_red_zone, state.frame_count)
|
535 |
+
if warning_triggered:
|
536 |
+
warning_msg = f"⚠️ WARNING: {tracked.class_name} (ID: {tracked.id}) has been in red zone for {tracked.frames_in_red_zone} frames!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
537 |
current_warnings.append(warning_msg)
|
538 |
state.red_zone_warnings.append({
|
539 |
'frame': state.frame_count,
|
540 |
'object_id': tracked.id,
|
541 |
+
'class': tracked.class_name,
|
542 |
'frames_in_zone': tracked.frames_in_red_zone,
|
543 |
'message': warning_msg
|
544 |
})
|
|
|
|
|
|
|
|
|
545 |
|
546 |
+
# Check if object should be counted (only count objects that actually move through the zone)
|
547 |
+
if not tracked.counted and tracked.has_movement() and is_in_red_zone:
|
548 |
+
# Additional check: object should have been tracked for at least a few frames
|
549 |
+
if len(tracked.trajectory) >= 3:
|
550 |
+
tracked.counted = True
|
551 |
+
state.red_zone_passed_objects[obj_class] += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
552 |
|
553 |
# If no match found, create new tracked object
|
554 |
if not matched:
|
555 |
new_obj = TrackedObject(state.next_obj_id, obj_class, bbox)
|
|
|
556 |
new_obj.last_seen = state.frame_count
|
557 |
new_obj.first_seen = state.frame_count
|
558 |
state.tracked_objects[state.next_obj_id] = new_obj
|
559 |
current_tracked.add(state.next_obj_id)
|
560 |
+
state.next_obj_id += 1
|
561 |
|
562 |
# Check red zone status for new object
|
563 |
+
new_obj.update_red_zone_status(is_in_red_zone, state.frame_count)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
564 |
|
565 |
except Exception as e:
|
566 |
continue
|
|
|
569 |
for obj_id, tracked in state.tracked_objects.items():
|
570 |
if obj_id not in current_tracked:
|
571 |
# Object not seen in current frame, update red zone status
|
572 |
+
tracked.update_red_zone_status(False, state.frame_count)
|
|
|
|
|
|
|
|
|
573 |
|
574 |
# Remove objects that haven't been seen for a while
|
575 |
if state.frame_count > state.time_window:
|
576 |
to_remove = []
|
577 |
for obj_id, tracked in state.tracked_objects.items():
|
578 |
if state.frame_count - tracked.last_seen > state.time_window * 2: # Remove after 2x time window
|
|
|
|
|
|
|
|
|
579 |
to_remove.append(obj_id)
|
580 |
|
581 |
for obj_id in to_remove:
|
|
|
589 |
print(f"Error in update_object_tracking: {str(e)}")
|
590 |
|
591 |
def get_red_zone_summary():
|
592 |
+
"""Generate summary of objects that passed through red zone"""
|
593 |
summary = []
|
594 |
|
595 |
+
if state.red_zone_passed_objects:
|
596 |
+
summary.append("🔴 RED ZONE PASSAGE SUMMARY:")
|
597 |
+
total_objects = sum(state.red_zone_passed_objects.values())
|
598 |
+
summary.append(f"Total objects passed: {total_objects}")
|
|
|
|
|
|
|
|
|
|
|
599 |
|
600 |
+
for obj_class, count in sorted(state.red_zone_passed_objects.items()):
|
601 |
summary.append(f" • {obj_class}: {count}")
|
|
|
|
|
|
|
602 |
|
603 |
+
# Add current objects in red zone
|
604 |
+
current_in_zone = []
|
605 |
+
for obj_id, tracked in state.tracked_objects.items():
|
606 |
+
if tracked.frames_in_red_zone > 0:
|
607 |
+
current_in_zone.append(f"{tracked.class_name} (ID: {tracked.id}, {tracked.frames_in_red_zone} frames)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
608 |
|
609 |
+
if current_in_zone:
|
610 |
+
summary.append("\n🚨 CURRENTLY IN RED ZONE:")
|
611 |
+
for obj_info in current_in_zone:
|
612 |
+
summary.append(f" • {obj_info}")
|
|
|
|
|
|
|
|
|
613 |
|
614 |
+
# Add recent warnings
|
615 |
+
recent_warnings = [w for w in state.red_zone_warnings if state.frame_count - w['frame'] <= 5]
|
616 |
if recent_warnings:
|
617 |
summary.append("\n⚠️ RECENT WARNINGS:")
|
618 |
+
for warning in recent_warnings[-3:]: # Show last 3 warnings
|
619 |
+
summary.append(f" • Frame {warning['frame']}: {warning['message']}")
|
620 |
|
621 |
+
return "\n".join(summary) if summary else "No objects detected in red zone yet."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
622 |
|
623 |
def process_frame(frame, confidence):
|
624 |
"""Process a video frame using cached protection area"""
|
|
|
702 |
|
703 |
# Update object tracking
|
704 |
state.frame_count += 1
|
705 |
+
update_object_tracking(objects_in_area)
|
706 |
|
707 |
# Cache detections for next frame
|
708 |
state.previous_detections = objects_in_area
|
|
|
813 |
summary_lines.append(f" • Total frames processed: {state.frame_count}")
|
814 |
summary_lines.append(f" • Time window used: {state.time_window} frames")
|
815 |
summary_lines.append(f" • Similarity threshold: {state.similarity_threshold:.2f}")
|
|
|
816 |
|
817 |
+
# Red zone passage summary
|
818 |
+
if state.red_zone_passed_objects:
|
819 |
+
summary_lines.append(f"\n🔴 RED ZONE PASSAGE SUMMARY:")
|
820 |
+
total_passed = sum(state.red_zone_passed_objects.values())
|
821 |
+
summary_lines.append(f" • Total objects passed through red zone: {total_passed}")
|
|
|
|
|
|
|
|
|
822 |
|
823 |
+
for obj_class, count in sorted(state.red_zone_passed_objects.items()):
|
824 |
+
summary_lines.append(f" - {obj_class}: {count}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
825 |
else:
|
826 |
+
summary_lines.append(f"\n🔴 RED ZONE PASSAGE SUMMARY:")
|
827 |
+
summary_lines.append(f" • No objects detected passing through red zone")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
828 |
|
829 |
# Warning summary
|
830 |
if state.red_zone_warnings:
|
|
|
839 |
for obj_class, count in sorted(warning_by_class.items()):
|
840 |
summary_lines.append(f" - {obj_class}: {count} warnings")
|
841 |
|
842 |
+
# Show last few warnings
|
843 |
if len(state.red_zone_warnings) > 0:
|
844 |
+
summary_lines.append(f"\n 📋 Recent warnings:")
|
845 |
+
for warning in state.red_zone_warnings[-5:]: # Last 5 warnings
|
846 |
summary_lines.append(f" - Frame {warning['frame']}: {warning['class']} (ID: {warning['object_id']}) - {warning['frames_in_zone']} frames in zone")
|
847 |
else:
|
848 |
summary_lines.append(f"\n⚠️ WARNING SUMMARY:")
|
849 |
+
summary_lines.append(f" • No warnings generated (no objects stayed in red zone > 3 frames)")
|
850 |
|
851 |
# Active tracking summary
|
852 |
total_tracked = len(state.tracked_objects)
|
|
|
854 |
summary_lines.append(f"\n📈 OBJECT TRACKING SUMMARY:")
|
855 |
summary_lines.append(f" • Total unique objects tracked: {total_tracked}")
|
856 |
|
857 |
+
# Group by class
|
858 |
objects_by_class = defaultdict(int)
|
859 |
for obj in state.tracked_objects.values():
|
860 |
+
objects_by_class[obj.class_name] += 1
|
|
|
861 |
|
862 |
for obj_class, count in sorted(objects_by_class.items()):
|
863 |
summary_lines.append(f" - {obj_class}: {count}")
|
864 |
|
865 |
summary_lines.append("\n✅ Processing completed successfully!")
|
|
|
866 |
|
867 |
return "\n".join(summary_lines)
|
868 |
|
|
|
895 |
state.selected_segments = selected
|
896 |
return gr.update()
|
897 |
|
898 |
+
def process_video_wrapper(video, confidence=DEFAULT_CONFIDENCE, target_fps=1, time_window=10, similarity_threshold=0.6):
|
899 |
"""Wrapper around process_video to handle full-size video processing"""
|
900 |
if video is None:
|
901 |
yield None, "Please upload a video"
|
|
|
905 |
state.reset_tracking()
|
906 |
state.time_window = time_window
|
907 |
state.similarity_threshold = similarity_threshold
|
|
|
908 |
|
909 |
protection_area = []
|
910 |
if state.selected_segments and state.detected_segments:
|
|
|
923 |
return
|
924 |
|
925 |
try:
|
926 |
+
yield None, f"🚀 Starting video processing...\n⚙️ Time window: {time_window} frames\n⚙️ Similarity threshold: {similarity_threshold:.2f}"
|
927 |
|
928 |
for frame, status in process_video(video, confidence, target_fps):
|
929 |
yield frame, status
|
|
|
931 |
except Exception as e:
|
932 |
yield None, f"Error processing video: {str(e)}"
|
933 |
|
934 |
+
# Update the Gradio interface
|
935 |
with gr.Blocks(title="Enhanced Rail Traffic Monitor") as demo:
|
936 |
gr.Markdown("""
|
937 |
# Enhanced Rail Traffic Monitoring System
|
938 |
|
939 |
## Features:
|
940 |
+
- **Smart Object Tracking**: Uses similarity method to track objects across frames
|
941 |
+
- **Red Zone Monitoring**: Counts objects passing through the red zone
|
942 |
+
- **Warning System**: Alerts when objects stay in red zone for more than 3 frames
|
943 |
+
- **Configurable Parameters**: Adjust time window and similarity threshold
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
944 |
|
945 |
## Setup Instructions:
|
946 |
|
|
|
952 |
1. Click "Extract Protection Area" to automatically detect rail segments
|
953 |
|
954 |
**Processing:**
|
955 |
+
3. Adjust detection confidence, processing frame rate, time window, and similarity threshold
|
956 |
4. Click "Process Video" to analyze
|
957 |
|
958 |
+
The system will show real-time results including:
|
959 |
+
- Objects currently in red zone
|
960 |
+
- Total count of objects that passed through
|
961 |
+
- Warnings for objects staying too long in red zone
|
962 |
+
- Tracking statistics
|
|
|
|
|
963 |
""")
|
964 |
|
965 |
with gr.Row():
|
|
|
996 |
similarity_threshold_slider = gr.Slider(
|
997 |
minimum=0.1,
|
998 |
maximum=0.9,
|
999 |
+
value=0.6,
|
1000 |
step=0.05,
|
1001 |
label="Similarity Threshold",
|
1002 |
info="Threshold for considering objects as the same (higher = stricter)"
|
1003 |
)
|
1004 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1005 |
with gr.Column():
|
1006 |
preview_image = gr.Image(
|
1007 |
label="Click to Select Protection Area (Original Size)",
|
|
|
1061 |
|
1062 |
process_btn.click(
|
1063 |
fn=process_video_wrapper,
|
1064 |
+
inputs=[video_input, confidence, fps_slider, time_window_slider, similarity_threshold_slider],
|
1065 |
outputs=[video_output, text_output]
|
1066 |
)
|
1067 |
|