Spaces:
Sleeping
Sleeping
File size: 8,334 Bytes
29bcdf2 bf836f1 33f7f53 435eb8d 29bcdf2 435eb8d 29bcdf2 aed03ad d71712b aed03ad 29bcdf2 33f7f53 29bcdf2 33f7f53 435eb8d 33f7f53 435eb8d 33f7f53 435eb8d bf836f1 435eb8d bf836f1 435eb8d bf836f1 435eb8d bf836f1 435eb8d bf836f1 33f7f53 435eb8d bf836f1 29bcdf2 bf836f1 435eb8d bf836f1 972c8da bf836f1 435eb8d bf836f1 435eb8d 33f7f53 bf836f1 435eb8d bf836f1 435eb8d bf836f1 435eb8d bf836f1 435eb8d 33f7f53 435eb8d bf836f1 435eb8d bf836f1 435eb8d bf836f1 435eb8d bf836f1 435eb8d 33f7f53 bf836f1 33f7f53 435eb8d 33f7f53 435eb8d 33f7f53 29bcdf2 e30bd59 435eb8d 29bcdf2 e30bd59 33f7f53 e30bd59 33f7f53 e30bd59 33f7f53 29bcdf2 aed03ad 435eb8d aed03ad 29bcdf2 33f7f53 435eb8d aed03ad 29bcdf2 435eb8d 33f7f53 435eb8d 1f2f1b7 435eb8d 1f2f1b7 435eb8d 29bcdf2 435eb8d 29bcdf2 435eb8d 29bcdf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import streamlit as st
import tensorflow as tf
import numpy as np
import cv2
from PIL import Image
from tensorflow.keras import layers, models
from tensorflow.keras.applications import EfficientNetB0
from tensorflow.keras.applications.efficientnet import preprocess_input
import joblib
import io
# Set page config
st.set_page_config(
page_title="Stone Classification",
page_icon="🪨",
layout="wide"
)
# Custom CSS with improved styling
st.markdown("""
<style>
.main {
padding: 2rem;
}
.stButton>button {
width: 100%;
margin-top: 1rem;
}
.prediction-card {
padding: 2rem;
border-radius: 0.5rem;
background-color: #d7d7d9;
margin: 1rem 0;
}
.top-predictions {
margin-top: 2rem;
padding: 1rem;
background-color: white;
border-radius: 0.5rem;
box-shadow: 0 1px 3px rgba(0,0,0,0.12);
}
</style>
""", unsafe_allow_html=True)
# Cache the model loading
@st.cache_resource
def load_model_and_scaler():
"""Load the trained model and scaler"""
try:
model = tf.keras.models.load_model('mlp_model.h5')
scaler = joblib.load('scaler.save')
return model, scaler
except Exception as e:
st.error(f"Error loading model or scaler: {str(e)}")
return None, None
def color_histogram(image, bins=16):
"""Calculate color histogram features"""
hist_r = cv2.calcHist([image], [0], None, [bins], [0, 256]).flatten()
hist_g = cv2.calcHist([image], [1], None, [bins], [0, 256]).flatten()
hist_b = cv2.calcHist([image], [2], None, [bins], [0, 256]).flatten()
hist_r = hist_r / (np.sum(hist_r) + 1e-7)
hist_g = hist_g / (np.sum(hist_g) + 1e-7)
hist_b = hist_b / (np.sum(hist_b) + 1e-7)
return np.concatenate([hist_r, hist_g, hist_b])
def color_moments(image):
"""Calculate color moments features"""
img = image.astype(np.float32) / 255.0
moments = []
for i in range(3):
channel = img[:,:,i]
mean = np.mean(channel)
std = np.std(channel) + 1e-7
skewness = np.mean(((channel - mean) / std) ** 3) if std != 0 else 0
moments.extend([mean, std, skewness])
return np.array(moments)
def dominant_color_descriptor(image, k=3):
"""Calculate dominant color descriptor"""
pixels = image.reshape(-1, 3).astype(np.float32)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2)
flags = cv2.KMEANS_RANDOM_CENTERS
try:
_, labels, centers = cv2.kmeans(pixels, k, None, criteria, 10, flags)
unique, counts = np.unique(labels, return_counts=True)
percentages = counts / len(labels)
return np.concatenate([centers.flatten(), percentages])
except Exception:
return np.zeros(k * 4)
def color_coherence_vector(image, k=3):
"""Calculate color coherence vector"""
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
gray = np.uint8(gray)
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
num_labels, labels = cv2.connectedComponents(binary)
ccv = []
for i in range(1, min(k+1, num_labels)):
region_mask = (labels == i)
total_pixels = np.sum(region_mask)
ccv.extend([total_pixels, total_pixels])
ccv.extend([0] * (2 * k - len(ccv)))
return np.array(ccv[:2*k])
@st.cache_resource
def create_vit_feature_extractor():
"""Create and cache the ViT feature extractor"""
input_shape = (256, 256, 3)
inputs = layers.Input(shape=input_shape)
x = layers.Lambda(preprocess_input)(inputs)
base_model = EfficientNetB0(
include_top=False,
weights='imagenet',
input_tensor=x
)
x = layers.GlobalAveragePooling2D()(base_model.output)
return models.Model(inputs=inputs, outputs=x)
def extract_features(image):
"""Extract all features from an image"""
# Traditional features
hist_features = color_histogram(image)
moment_features = color_moments(image)
dominant_features = dominant_color_descriptor(image)
ccv_features = color_coherence_vector(image)
traditional_features = np.concatenate([
hist_features,
moment_features,
dominant_features,
ccv_features
])
# Deep features using ViT
feature_extractor = create_vit_feature_extractor()
vit_features = feature_extractor.predict(
np.expand_dims(image, axis=0),
verbose=0
)
# Combine all features
return np.concatenate([traditional_features, vit_features.flatten()])
def preprocess_image(image, scaler):
"""Preprocess the uploaded image"""
# Convert to RGB if needed
if image.mode != 'RGB':
image = image.convert('RGB')
# Convert to numpy array and resize
img_array = np.array(image)
img_array = cv2.resize(img_array, (256, 256))
img_array = img_array.astype('float32') / 255.0
# Extract all features
features = extract_features(img_array)
# Scale features using the provided scaler
scaled_features = scaler.transform(features.reshape(1, -1))
return scaled_features
def get_top_predictions(prediction, class_names, top_k=5):
"""Get top k predictions with their probabilities"""
top_indices = prediction.argsort()[0][-top_k:][::-1]
return [
(class_names[i], float(prediction[0][i]) * 100)
for i in top_indices
]
def main():
st.title("🪨 Stone Classification")
st.write("Upload an image of a stone to classify its type")
# Load model and scaler
model, scaler = load_model_and_scaler()
if model is None or scaler is None:
st.error("Failed to load model or scaler. Please ensure both files exist.")
return
# Initialize session state
if 'predictions' not in st.session_state:
st.session_state.predictions = None
col1, col2 = st.columns(2)
with col1:
st.subheader("Upload Image")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
try:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
with st.spinner('Analyzing image...'):
processed_image = preprocess_image(image, scaler)
prediction = model.predict(processed_image, verbose=0)
class_names = ['10', '6.5', '7', '7.5', '8', '8.5', '9', '9.2', '9.5', '9.7']
st.session_state.predictions = get_top_predictions(prediction, class_names)
except Exception as e:
st.error(f"Error processing image: {str(e)}")
with col2:
st.subheader("Prediction Results")
if st.session_state.predictions:
# Display main prediction
top_class, top_confidence = st.session_state.predictions[0]
st.markdown(
f"""
<div class='prediction-card'>
<h3>Primary Prediction: Grade {top_class}</h3>
<h3>Confidence: {top_confidence:.2f}%</h3>
</div>
""",
unsafe_allow_html=True
)
# Display confidence bar
st.progress(top_confidence / 100)
# Display top 5 predictions
st.markdown("### Top 5 Predictions")
st.markdown("<div class='top-predictions'>", unsafe_allow_html=True)
for class_name, confidence in st.session_state.predictions:
cols = st.columns([2, 6, 2])
with cols[0]:
st.write(f"Grade {class_name}")
with cols[1]:
st.progress(confidence / 100)
with cols[2]:
st.write(f"{confidence:.2f}%")
st.markdown("</div>", unsafe_allow_html=True)
else:
st.info("Upload an image to see the predictions")
st.markdown("---")
st.markdown("Made with ❤️ using Streamlit")
if __name__ == "__main__":
main() |