SonFox2920's picture
Create app.py
29bcdf2 verified
raw
history blame
5.02 kB
import streamlit as st
import tensorflow as tf
import numpy as np
import cv2
from PIL import Image
import io
# Set page config
st.set_page_config(
page_title="Stone Classification",
page_icon="🪨",
layout="wide"
)
# Custom CSS to improve the appearance
st.markdown("""
<style>
.main {
padding: 2rem;
}
.stButton>button {
width: 100%;
margin-top: 1rem;
}
.upload-text {
text-align: center;
padding: 2rem;
}
</style>
""", unsafe_allow_html=True)
@st.cache_resource
def load_model():
"""Load the trained model"""
return tf.keras.models.load_model('custom_model.h5')
def preprocess_image(image):
"""Preprocess the uploaded image"""
# Convert to RGB if needed
if image.mode != 'RGB':
image = image.convert('RGB')
# Convert to numpy array
img_array = np.array(image)
# Convert to RGB if needed
if len(img_array.shape) == 2: # Grayscale
img_array = cv2.cvtColor(img_array, cv2.COLOR_GRAY2RGB)
elif img_array.shape[2] == 4: # RGBA
img_array = cv2.cvtColor(img_array, cv2.COLOR_RGBA2RGB)
# Preprocess image similar to training
img_hsv = cv2.cvtColor(img_array, cv2.COLOR_RGB2HSV)
img_hsv[:, :, 2] = cv2.equalizeHist(img_hsv[:, :, 2])
img_array = cv2.cvtColor(img_hsv, cv2.COLOR_HSV2RGB)
# Adjust brightness
target_brightness = 150
current_brightness = np.mean(img_array)
alpha = target_brightness / (current_brightness + 1e-5)
img_array = cv2.convertScaleAbs(img_array, alpha=alpha, beta=0)
# Apply Gaussian blur
img_array = cv2.GaussianBlur(img_array, (5, 5), 0)
# Resize
img_array = cv2.resize(img_array, (256, 256))
# Normalize
img_array = img_array.astype('float32') / 255.0
return img_array
def main():
# Title
st.title("🪨 Stone Classification")
st.write("Upload an image of a stone to classify its type")
# Initialize session state for prediction if not exists
if 'prediction' not in st.session_state:
st.session_state.prediction = None
if 'confidence' not in st.session_state:
st.session_state.confidence = None
# Create two columns
col1, col2 = st.columns(2)
with col1:
st.subheader("Upload Image")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Display uploaded image
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
# Add predict button
if st.button("Predict"):
try:
# Load model
model = load_model()
# Preprocess image
processed_image = preprocess_image(image)
# Make prediction
prediction = model.predict(np.expand_dims(processed_image, axis=0))
class_names = ['Artificial', 'Nature'] # Replace with your actual class names
# Get prediction and confidence
predicted_class = class_names[np.argmax(prediction)]
confidence = float(np.max(prediction)) * 100
# Store in session state
st.session_state.prediction = predicted_class
st.session_state.confidence = confidence
except Exception as e:
st.error(f"Error during prediction: {str(e)}")
with col2:
st.subheader("Prediction Results")
if st.session_state.prediction is not None:
# Create a card-like container for results
results_container = st.container()
with results_container:
st.markdown("""
<style>
.prediction-card {
padding: 2rem;
border-radius: 0.5rem;
background-color: #f0f2f6;
margin: 1rem 0;
}
</style>
""", unsafe_allow_html=True)
st.markdown("<div class='prediction-card'>", unsafe_allow_html=True)
st.markdown(f"### Predicted Class: {st.session_state.prediction}")
st.markdown(f"### Confidence: {st.session_state.confidence:.2f}%")
st.markdown("</div>", unsafe_allow_html=True)
# Add confidence bar
st.progress(st.session_state.confidence / 100)
else:
st.info("Upload an image and click 'Predict' to see the results")
# Footer
st.markdown("---")
st.markdown("Made with ❤️ using Streamlit")
if __name__ == "__main__":
main()