SonFox2920's picture
Update app.py
33f7f53 verified
raw
history blame
8.33 kB
import streamlit as st
import tensorflow as tf
import numpy as np
import cv2
from PIL import Image
from tensorflow.keras import layers, models
from tensorflow.keras.applications import EfficientNetB0
from tensorflow.keras.applications.efficientnet import preprocess_input
import joblib
import io
# Set page config
st.set_page_config(
page_title="Stone Classification",
page_icon="🪨",
layout="wide"
)
# Custom CSS with improved styling
st.markdown("""
<style>
.main {
padding: 2rem;
}
.stButton>button {
width: 100%;
margin-top: 1rem;
}
.prediction-card {
padding: 2rem;
border-radius: 0.5rem;
background-color: #d7d7d9;
margin: 1rem 0;
}
.top-predictions {
margin-top: 2rem;
padding: 1rem;
background-color: white;
border-radius: 0.5rem;
box-shadow: 0 1px 3px rgba(0,0,0,0.12);
}
</style>
""", unsafe_allow_html=True)
# Cache the model loading
@st.cache_resource
def load_model_and_scaler():
"""Load the trained model and scaler"""
try:
model = tf.keras.models.load_model('mlp_model.h5')
scaler = joblib.load('scaler.save')
return model, scaler
except Exception as e:
st.error(f"Error loading model or scaler: {str(e)}")
return None, None
def color_histogram(image, bins=16):
"""Calculate color histogram features"""
hist_r = cv2.calcHist([image], [0], None, [bins], [0, 256]).flatten()
hist_g = cv2.calcHist([image], [1], None, [bins], [0, 256]).flatten()
hist_b = cv2.calcHist([image], [2], None, [bins], [0, 256]).flatten()
hist_r = hist_r / (np.sum(hist_r) + 1e-7)
hist_g = hist_g / (np.sum(hist_g) + 1e-7)
hist_b = hist_b / (np.sum(hist_b) + 1e-7)
return np.concatenate([hist_r, hist_g, hist_b])
def color_moments(image):
"""Calculate color moments features"""
img = image.astype(np.float32) / 255.0
moments = []
for i in range(3):
channel = img[:,:,i]
mean = np.mean(channel)
std = np.std(channel) + 1e-7
skewness = np.mean(((channel - mean) / std) ** 3) if std != 0 else 0
moments.extend([mean, std, skewness])
return np.array(moments)
def dominant_color_descriptor(image, k=3):
"""Calculate dominant color descriptor"""
pixels = image.reshape(-1, 3).astype(np.float32)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2)
flags = cv2.KMEANS_RANDOM_CENTERS
try:
_, labels, centers = cv2.kmeans(pixels, k, None, criteria, 10, flags)
unique, counts = np.unique(labels, return_counts=True)
percentages = counts / len(labels)
return np.concatenate([centers.flatten(), percentages])
except Exception:
return np.zeros(k * 4)
def color_coherence_vector(image, k=3):
"""Calculate color coherence vector"""
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
gray = np.uint8(gray)
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
num_labels, labels = cv2.connectedComponents(binary)
ccv = []
for i in range(1, min(k+1, num_labels)):
region_mask = (labels == i)
total_pixels = np.sum(region_mask)
ccv.extend([total_pixels, total_pixels])
ccv.extend([0] * (2 * k - len(ccv)))
return np.array(ccv[:2*k])
@st.cache_resource
def create_vit_feature_extractor():
"""Create and cache the ViT feature extractor"""
input_shape = (256, 256, 3)
inputs = layers.Input(shape=input_shape)
x = layers.Lambda(preprocess_input)(inputs)
base_model = EfficientNetB0(
include_top=False,
weights='imagenet',
input_tensor=x
)
x = layers.GlobalAveragePooling2D()(base_model.output)
return models.Model(inputs=inputs, outputs=x)
def extract_features(image):
"""Extract all features from an image"""
# Traditional features
hist_features = color_histogram(image)
moment_features = color_moments(image)
dominant_features = dominant_color_descriptor(image)
ccv_features = color_coherence_vector(image)
traditional_features = np.concatenate([
hist_features,
moment_features,
dominant_features,
ccv_features
])
# Deep features using ViT
feature_extractor = create_vit_feature_extractor()
vit_features = feature_extractor.predict(
np.expand_dims(image, axis=0),
verbose=0
)
# Combine all features
return np.concatenate([traditional_features, vit_features.flatten()])
def preprocess_image(image, scaler):
"""Preprocess the uploaded image"""
# Convert to RGB if needed
if image.mode != 'RGB':
image = image.convert('RGB')
# Convert to numpy array and resize
img_array = np.array(image)
img_array = cv2.resize(img_array, (256, 256))
img_array = img_array.astype('float32') / 255.0
# Extract all features
features = extract_features(img_array)
# Scale features using the provided scaler
scaled_features = scaler.transform(features.reshape(1, -1))
return scaled_features
def get_top_predictions(prediction, class_names, top_k=5):
"""Get top k predictions with their probabilities"""
top_indices = prediction.argsort()[0][-top_k:][::-1]
return [
(class_names[i], float(prediction[0][i]) * 100)
for i in top_indices
]
def main():
st.title("🪨 Stone Classification")
st.write("Upload an image of a stone to classify its type")
# Load model and scaler
model, scaler = load_model_and_scaler()
if model is None or scaler is None:
st.error("Failed to load model or scaler. Please ensure both files exist.")
return
# Initialize session state
if 'predictions' not in st.session_state:
st.session_state.predictions = None
col1, col2 = st.columns(2)
with col1:
st.subheader("Upload Image")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
try:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
with st.spinner('Analyzing image...'):
processed_image = preprocess_image(image, scaler)
prediction = model.predict(processed_image, verbose=0)
class_names = ['10', '6.5', '7', '7.5', '8', '8.5', '9', '9.2', '9.5', '9.7']
st.session_state.predictions = get_top_predictions(prediction, class_names)
except Exception as e:
st.error(f"Error processing image: {str(e)}")
with col2:
st.subheader("Prediction Results")
if st.session_state.predictions:
# Display main prediction
top_class, top_confidence = st.session_state.predictions[0]
st.markdown(
f"""
<div class='prediction-card'>
<h3>Primary Prediction: Grade {top_class}</h3>
<h3>Confidence: {top_confidence:.2f}%</h3>
</div>
""",
unsafe_allow_html=True
)
# Display confidence bar
st.progress(top_confidence / 100)
# Display top 5 predictions
st.markdown("### Top 5 Predictions")
st.markdown("<div class='top-predictions'>", unsafe_allow_html=True)
for class_name, confidence in st.session_state.predictions:
cols = st.columns([2, 6, 2])
with cols[0]:
st.write(f"Grade {class_name}")
with cols[1]:
st.progress(confidence / 100)
with cols[2]:
st.write(f"{confidence:.2f}%")
st.markdown("</div>", unsafe_allow_html=True)
else:
st.info("Upload an image to see the predictions")
st.markdown("---")
st.markdown("Made with ❤️ using Streamlit")
if __name__ == "__main__":
main()