Spaces:
Sleeping
Sleeping
import streamlit as st | |
import tensorflow as tf | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
import io | |
import os | |
import cv2 | |
import numpy as np | |
from tensorflow import keras | |
from tensorflow.keras import layers, models | |
from sklearn.preprocessing import StandardScaler | |
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay | |
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score | |
import matplotlib.pyplot as plt | |
import random | |
from tensorflow.keras import layers, models | |
from tensorflow.keras.applications import EfficientNetB0 | |
from tensorflow.keras.applications.efficientnet import preprocess_input | |
from tensorflow.keras.layers import Lambda # Đảm bảo nhập Lambda từ tensorflow.keras.layers | |
# Set page config | |
st.set_page_config( | |
page_title="Stone Classification", | |
page_icon="🪨", | |
layout="wide" | |
) | |
# Custom CSS to improve the appearance | |
st.markdown(""" | |
<style> | |
.main { | |
padding: 2rem; | |
} | |
.stButton>button { | |
width: 100%; | |
margin-top: 1rem; | |
} | |
.upload-text { | |
text-align: center; | |
padding: 2rem; | |
} | |
.prediction-card { | |
padding: 2rem; | |
border-radius: 0.5rem; | |
background-color: #f0f2f6; | |
margin: 1rem 0; | |
} | |
.top-predictions { | |
margin-top: 2rem; | |
padding: 1rem; | |
background-color: white; | |
border-radius: 0.5rem; | |
box-shadow: 0 1px 3px rgba(0,0,0,0.12); | |
} | |
.prediction-bar { | |
display: flex; | |
align-items: center; | |
margin: 0.5rem 0; | |
} | |
.prediction-label { | |
width: 100px; | |
font-weight: 500; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
def load_model(): | |
"""Load the trained model""" | |
return tf.keras.models.load_model('mlp_model.h5') | |
def color_histogram(image, bins=16): | |
# (Previous implementation remains the same) | |
hist_r = cv2.calcHist([image], [0], None, [bins], [0, 256]).flatten() | |
hist_g = cv2.calcHist([image], [1], None, [bins], [0, 256]).flatten() | |
hist_b = cv2.calcHist([image], [2], None, [bins], [0, 256]).flatten() | |
hist_r = hist_r / np.sum(hist_r) | |
hist_g = hist_g / np.sum(hist_g) | |
hist_b = hist_b / np.sum(hist_b) | |
return np.concatenate([hist_r, hist_g, hist_b]) | |
def color_moments(image): | |
# (Previous implementation remains the same) | |
img = image.astype(np.float32) / 255.0 | |
moments = [] | |
for i in range(3): # For each color channel | |
channel = img[:,:,i] | |
mean = np.mean(channel) | |
std = np.std(channel) | |
skewness = np.mean(((channel - mean) / std) ** 3) | |
moments.extend([mean, std, skewness]) | |
return np.array(moments) | |
def dominant_color_descriptor(image, k=3): | |
# (Previous implementation remains the same) | |
pixels = image.reshape(-1, 3) | |
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2) | |
flags = cv2.KMEANS_RANDOM_CENTERS | |
try: | |
_, labels, centers = cv2.kmeans(pixels.astype(np.float32), k, None, criteria, 10, flags) | |
unique, counts = np.unique(labels, return_counts=True) | |
percentages = counts / len(labels) | |
dominant_colors = centers.flatten() | |
color_percentages = percentages | |
return np.concatenate([dominant_colors, color_percentages]) | |
except: | |
return np.zeros(2 * k) | |
def color_coherence_vector(image, k=3): | |
# Convert to grayscale | |
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) | |
# Convert the grayscale image to 8-bit format before applying threshold | |
gray = np.uint8(gray) | |
# Apply Otsu's thresholding method | |
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) | |
# Perform connected components analysis | |
num_labels, labels = cv2.connectedComponents(binary) | |
ccv = [] | |
for i in range(1, min(k+1, num_labels)): | |
region_mask = (labels == i) | |
total_pixels = np.sum(region_mask) | |
coherent_pixels = total_pixels | |
ccv.extend([coherent_pixels, total_pixels]) | |
while len(ccv) < 2 * k: | |
ccv.append(0) | |
return np.array(ccv) | |
# ViT and Feature Extraction Functions (from previous implementation) | |
# (Keeping the Patches, PatchEncoder, and create_vit_feature_extractor functions) | |
def extract_features(image): | |
""" | |
Extract multiple features from an image | |
""" | |
color_hist = color_histogram(image) | |
color_mom = color_moments(image) | |
dom_color = dominant_color_descriptor(image) | |
ccv = color_coherence_vector(image) | |
return np.concatenate([color_hist, color_mom, dom_color, ccv]) | |
from transformers import ViTFeatureExtractor, ViTModel | |
import torch | |
from tensorflow.keras import layers, models | |
def create_vit_feature_extractor(input_shape=(256, 256, 3), num_classes=None): | |
# Xây dựng mô hình ViT đã huấn luyện sẵn từ TensorFlow | |
inputs = layers.Input(shape=input_shape) | |
# Thêm lớp Lambda để tiền xử lý ảnh | |
x = Lambda(preprocess_input, output_shape=input_shape)(inputs) # Xử lý ảnh đầu vào | |
# Bạn có thể thay thế phần này bằng một mô hình ViT đã được huấn luyện sẵn. | |
# Dưới đây là ví dụ dùng EfficientNetB0 thay vì ViT. | |
# Tạo mô hình ViT hoặc sử dụng mô hình khác đã được huấn luyện sẵn | |
vit_model = EfficientNetB0(include_top=False, weights='imagenet', input_tensor=x) | |
# Trích xuất đặc trưng từ mô hình ViT | |
x = layers.GlobalAveragePooling2D()(vit_model.output) | |
if num_classes: | |
x = layers.Dense(num_classes, activation='softmax')(x) # Thêm lớp phân loại (nếu có) | |
return models.Model(inputs=inputs, outputs=x) | |
def preprocess_image(image): | |
"""Preprocess the uploaded image""" | |
# # Convert to RGB if needed | |
# if image.mode != 'RGB': | |
# image = image.convert('RGB') | |
# Convert to numpy array | |
img_array = np.array(image) | |
# # Convert to RGB if needed | |
# if len(img_array.shape) == 2: # Grayscale | |
# img_array = cv2.cvtColor(img_array, cv2.COLOR_GRAY2RGB) | |
# elif img_array.shape[2] == 4: # RGBA | |
# img_array = cv2.cvtColor(img_array, cv2.COLOR_RGBA2RGB) | |
# # Preprocess image similar to training | |
# img_hsv = cv2.cvtColor(img_array, cv2.COLOR_RGB2HSV) | |
# img_hsv[:, :, 2] = cv2.equalizeHist(img_hsv[:, :, 2]) | |
# img_array = cv2.cvtColor(img_hsv, cv2.COLOR_HSV2RGB) | |
# # Adjust brightness | |
# target_brightness = 150 | |
# current_brightness = np.mean(img_array) | |
# alpha = target_brightness / (current_brightness + 1e-5) | |
# img_array = cv2.convertScaleAbs(img_array, alpha=alpha, beta=0) | |
# # Apply Gaussian blur | |
# img_array = cv2.GaussianBlur(img_array, (5, 5), 0) | |
# Resize | |
img_array = cv2.resize(img_array, (256, 256)) | |
# Normalize | |
img_array = img_array.astype('float32') / 255.0 | |
image_features = extract_features(img_array) | |
vit_extractor = create_vit_feature_extractor() | |
# Trích xuất đặc trưng ViT từ các hình ảnh | |
image_vit = vit_extractor.predict(img_array) # Dự đoán cho tập train | |
image_combined = np.concatenate([image_features, image_vit], axis=1) | |
scaler = StandardScaler() | |
image_scaled = scaler.fit_transform(image_combined) | |
return image_scaled | |
def get_top_predictions(prediction, class_names, top_k=5): | |
"""Get top k predictions with their probabilities""" | |
# Get indices of top k predictions | |
top_indices = prediction.argsort()[0][-top_k:][::-1] | |
# Get corresponding class names and probabilities | |
top_predictions = [ | |
(class_names[i], float(prediction[0][i]) * 100) | |
for i in top_indices | |
] | |
return top_predictions | |
def main(): | |
# Title | |
st.title("🪨 Stone Classification") | |
st.write("Upload an image of a stone to classify its type") | |
# Initialize session state for prediction if not exists | |
if 'predictions' not in st.session_state: | |
st.session_state.predictions = None | |
# Create two columns | |
col1, col2 = st.columns(2) | |
with col1: | |
st.subheader("Upload Image") | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
# Display uploaded image | |
image = Image.open(uploaded_file) | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
with st.spinner('Analyzing image...'): | |
try: | |
# Load model | |
model = load_model() | |
# Preprocess image | |
processed_image = preprocess_image(image) | |
# Make prediction | |
prediction = model.predict(np.expand_dims(processed_image, axis=0)) | |
class_names = ['10', '6.5', '7', '7.5', '8', '8.5', '9', '9.2', '9.5', '9.7'] | |
# Get top 5 predictions | |
top_predictions = get_top_predictions(prediction, class_names) | |
# Store in session state | |
st.session_state.predictions = top_predictions | |
except Exception as e: | |
st.error(f"Error during prediction: {str(e)}") | |
with col2: | |
st.subheader("Prediction Results") | |
if st.session_state.predictions is not None: | |
# Create a card-like container for results | |
results_container = st.container() | |
with results_container: | |
# Display main prediction | |
st.markdown("<div class='prediction-card'>", unsafe_allow_html=True) | |
top_class, top_confidence = st.session_state.predictions[0] | |
st.markdown(f"### Primary Prediction: Grade {top_class}") | |
st.markdown(f"### Confidence: {top_confidence:.2f}%") | |
st.markdown("</div>", unsafe_allow_html=True) | |
# Display confidence bar for top prediction | |
st.progress(top_confidence / 100) | |
# Display top 5 predictions | |
st.markdown("### Top 5 Predictions") | |
st.markdown("<div class='top-predictions'>", unsafe_allow_html=True) | |
# Create a Streamlit container for the predictions | |
for class_name, confidence in st.session_state.predictions: | |
col_label, col_bar, col_value = st.columns([2, 6, 2]) | |
with col_label: | |
st.write(f"Grade {class_name}") | |
with col_bar: | |
st.progress(confidence / 100) | |
with col_value: | |
st.write(f"{confidence:.2f}%") | |
st.markdown("</div>", unsafe_allow_html=True) | |
else: | |
st.info("Upload an image and click 'Predict' to see the results") | |
# Footer | |
st.markdown("---") | |
st.markdown("Made with ❤️ using Streamlit") | |
if __name__ == "__main__": | |
main() |