SonFox2920's picture
Update app.py
bf836f1 verified
raw
history blame
11.3 kB
import streamlit as st
import tensorflow as tf
import numpy as np
import cv2
from PIL import Image
import io
import os
import cv2
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers, models
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
import matplotlib.pyplot as plt
import random
from tensorflow.keras import layers, models
from tensorflow.keras.applications import EfficientNetB0
from tensorflow.keras.applications.efficientnet import preprocess_input
from tensorflow.keras.layers import Lambda # Đảm bảo nhập Lambda từ tensorflow.keras.layers
# Set page config
st.set_page_config(
page_title="Stone Classification",
page_icon="🪨",
layout="wide"
)
# Custom CSS to improve the appearance
st.markdown("""
<style>
.main {
padding: 2rem;
}
.stButton>button {
width: 100%;
margin-top: 1rem;
}
.upload-text {
text-align: center;
padding: 2rem;
}
.prediction-card {
padding: 2rem;
border-radius: 0.5rem;
background-color: #f0f2f6;
margin: 1rem 0;
}
.top-predictions {
margin-top: 2rem;
padding: 1rem;
background-color: white;
border-radius: 0.5rem;
box-shadow: 0 1px 3px rgba(0,0,0,0.12);
}
.prediction-bar {
display: flex;
align-items: center;
margin: 0.5rem 0;
}
.prediction-label {
width: 100px;
font-weight: 500;
}
</style>
""", unsafe_allow_html=True)
@st.cache_resource
def load_model():
"""Load the trained model"""
return tf.keras.models.load_model('mlp_model.h5')
def color_histogram(image, bins=16):
# (Previous implementation remains the same)
hist_r = cv2.calcHist([image], [0], None, [bins], [0, 256]).flatten()
hist_g = cv2.calcHist([image], [1], None, [bins], [0, 256]).flatten()
hist_b = cv2.calcHist([image], [2], None, [bins], [0, 256]).flatten()
hist_r = hist_r / np.sum(hist_r)
hist_g = hist_g / np.sum(hist_g)
hist_b = hist_b / np.sum(hist_b)
return np.concatenate([hist_r, hist_g, hist_b])
def color_moments(image):
# (Previous implementation remains the same)
img = image.astype(np.float32) / 255.0
moments = []
for i in range(3): # For each color channel
channel = img[:,:,i]
mean = np.mean(channel)
std = np.std(channel)
skewness = np.mean(((channel - mean) / std) ** 3)
moments.extend([mean, std, skewness])
return np.array(moments)
def dominant_color_descriptor(image, k=3):
# (Previous implementation remains the same)
pixels = image.reshape(-1, 3)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2)
flags = cv2.KMEANS_RANDOM_CENTERS
try:
_, labels, centers = cv2.kmeans(pixels.astype(np.float32), k, None, criteria, 10, flags)
unique, counts = np.unique(labels, return_counts=True)
percentages = counts / len(labels)
dominant_colors = centers.flatten()
color_percentages = percentages
return np.concatenate([dominant_colors, color_percentages])
except:
return np.zeros(2 * k)
def color_coherence_vector(image, k=3):
# Convert to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# Convert the grayscale image to 8-bit format before applying threshold
gray = np.uint8(gray)
# Apply Otsu's thresholding method
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# Perform connected components analysis
num_labels, labels = cv2.connectedComponents(binary)
ccv = []
for i in range(1, min(k+1, num_labels)):
region_mask = (labels == i)
total_pixels = np.sum(region_mask)
coherent_pixels = total_pixels
ccv.extend([coherent_pixels, total_pixels])
while len(ccv) < 2 * k:
ccv.append(0)
return np.array(ccv)
# ViT and Feature Extraction Functions (from previous implementation)
# (Keeping the Patches, PatchEncoder, and create_vit_feature_extractor functions)
def extract_features(image):
"""
Extract multiple features from an image
"""
color_hist = color_histogram(image)
color_mom = color_moments(image)
dom_color = dominant_color_descriptor(image)
ccv = color_coherence_vector(image)
return np.concatenate([color_hist, color_mom, dom_color, ccv])
from transformers import ViTFeatureExtractor, ViTModel
import torch
from tensorflow.keras import layers, models
def create_vit_feature_extractor(input_shape=(256, 256, 3), num_classes=None):
# Xây dựng mô hình ViT đã huấn luyện sẵn từ TensorFlow
inputs = layers.Input(shape=input_shape)
# Thêm lớp Lambda để tiền xử lý ảnh
x = Lambda(preprocess_input, output_shape=input_shape)(inputs) # Xử lý ảnh đầu vào
# Bạn có thể thay thế phần này bằng một mô hình ViT đã được huấn luyện sẵn.
# Dưới đây là ví dụ dùng EfficientNetB0 thay vì ViT.
# Tạo mô hình ViT hoặc sử dụng mô hình khác đã được huấn luyện sẵn
vit_model = EfficientNetB0(include_top=False, weights='imagenet', input_tensor=x)
# Trích xuất đặc trưng từ mô hình ViT
x = layers.GlobalAveragePooling2D()(vit_model.output)
if num_classes:
x = layers.Dense(num_classes, activation='softmax')(x) # Thêm lớp phân loại (nếu có)
return models.Model(inputs=inputs, outputs=x)
def preprocess_image(image):
"""Preprocess the uploaded image"""
# # Convert to RGB if needed
# if image.mode != 'RGB':
# image = image.convert('RGB')
# Convert to numpy array
img_array = np.array(image)
# # Convert to RGB if needed
# if len(img_array.shape) == 2: # Grayscale
# img_array = cv2.cvtColor(img_array, cv2.COLOR_GRAY2RGB)
# elif img_array.shape[2] == 4: # RGBA
# img_array = cv2.cvtColor(img_array, cv2.COLOR_RGBA2RGB)
# # Preprocess image similar to training
# img_hsv = cv2.cvtColor(img_array, cv2.COLOR_RGB2HSV)
# img_hsv[:, :, 2] = cv2.equalizeHist(img_hsv[:, :, 2])
# img_array = cv2.cvtColor(img_hsv, cv2.COLOR_HSV2RGB)
# # Adjust brightness
# target_brightness = 150
# current_brightness = np.mean(img_array)
# alpha = target_brightness / (current_brightness + 1e-5)
# img_array = cv2.convertScaleAbs(img_array, alpha=alpha, beta=0)
# # Apply Gaussian blur
# img_array = cv2.GaussianBlur(img_array, (5, 5), 0)
# Resize
img_array = cv2.resize(img_array, (256, 256))
# Normalize
img_array = img_array.astype('float32') / 255.0
image_features = extract_features(img_array)
vit_extractor = create_vit_feature_extractor()
# Trích xuất đặc trưng ViT từ các hình ảnh
image_vit = vit_extractor.predict(img_array) # Dự đoán cho tập train
image_combined = np.concatenate([image_features, image_vit], axis=1)
scaler = StandardScaler()
image_scaled = scaler.fit_transform(image_combined)
return image_scaled
def get_top_predictions(prediction, class_names, top_k=5):
"""Get top k predictions with their probabilities"""
# Get indices of top k predictions
top_indices = prediction.argsort()[0][-top_k:][::-1]
# Get corresponding class names and probabilities
top_predictions = [
(class_names[i], float(prediction[0][i]) * 100)
for i in top_indices
]
return top_predictions
def main():
# Title
st.title("🪨 Stone Classification")
st.write("Upload an image of a stone to classify its type")
# Initialize session state for prediction if not exists
if 'predictions' not in st.session_state:
st.session_state.predictions = None
# Create two columns
col1, col2 = st.columns(2)
with col1:
st.subheader("Upload Image")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Display uploaded image
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
with st.spinner('Analyzing image...'):
try:
# Load model
model = load_model()
# Preprocess image
processed_image = preprocess_image(image)
# Make prediction
prediction = model.predict(np.expand_dims(processed_image, axis=0))
class_names = ['10', '6.5', '7', '7.5', '8', '8.5', '9', '9.2', '9.5', '9.7']
# Get top 5 predictions
top_predictions = get_top_predictions(prediction, class_names)
# Store in session state
st.session_state.predictions = top_predictions
except Exception as e:
st.error(f"Error during prediction: {str(e)}")
with col2:
st.subheader("Prediction Results")
if st.session_state.predictions is not None:
# Create a card-like container for results
results_container = st.container()
with results_container:
# Display main prediction
st.markdown("<div class='prediction-card'>", unsafe_allow_html=True)
top_class, top_confidence = st.session_state.predictions[0]
st.markdown(f"### Primary Prediction: Grade {top_class}")
st.markdown(f"### Confidence: {top_confidence:.2f}%")
st.markdown("</div>", unsafe_allow_html=True)
# Display confidence bar for top prediction
st.progress(top_confidence / 100)
# Display top 5 predictions
st.markdown("### Top 5 Predictions")
st.markdown("<div class='top-predictions'>", unsafe_allow_html=True)
# Create a Streamlit container for the predictions
for class_name, confidence in st.session_state.predictions:
col_label, col_bar, col_value = st.columns([2, 6, 2])
with col_label:
st.write(f"Grade {class_name}")
with col_bar:
st.progress(confidence / 100)
with col_value:
st.write(f"{confidence:.2f}%")
st.markdown("</div>", unsafe_allow_html=True)
else:
st.info("Upload an image and click 'Predict' to see the results")
# Footer
st.markdown("---")
st.markdown("Made with ❤️ using Streamlit")
if __name__ == "__main__":
main()