Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -7,10 +7,11 @@ from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTok
|
|
7 |
print("="*150)
|
8 |
print("MODEL LOADED")
|
9 |
st.title("img_captioning_app")
|
|
|
10 |
#st.text("Build with Streamlit and OpenCV")
|
11 |
if "photo" not in st.session_state:
|
12 |
st.session_state["photo"]="not done"
|
13 |
-
|
14 |
c2, c3 = st.columns([2,1])
|
15 |
def change_photo_state():
|
16 |
st.session_state["photo"]="done"
|
@@ -23,9 +24,7 @@ def load_image(img):
|
|
23 |
return im
|
24 |
activities = ["About"]
|
25 |
choice = st.sidebar.selectbox("Select Activty",activities)
|
26 |
-
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
27 |
uploaded_photo = c2.file_uploader("Upload Image",type=['jpg','png','jpeg'], on_change=change_photo_state)
|
28 |
-
feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
29 |
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
30 |
camera_photo = c2.camera_input("Take a photo", on_change=change_photo_state)
|
31 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
7 |
print("="*150)
|
8 |
print("MODEL LOADED")
|
9 |
st.title("img_captioning_app")
|
10 |
+
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
11 |
#st.text("Build with Streamlit and OpenCV")
|
12 |
if "photo" not in st.session_state:
|
13 |
st.session_state["photo"]="not done"
|
14 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
15 |
c2, c3 = st.columns([2,1])
|
16 |
def change_photo_state():
|
17 |
st.session_state["photo"]="done"
|
|
|
24 |
return im
|
25 |
activities = ["About"]
|
26 |
choice = st.sidebar.selectbox("Select Activty",activities)
|
|
|
27 |
uploaded_photo = c2.file_uploader("Upload Image",type=['jpg','png','jpeg'], on_change=change_photo_state)
|
|
|
28 |
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
29 |
camera_photo = c2.camera_input("Take a photo", on_change=change_photo_state)
|
30 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|