File size: 8,335 Bytes
c0490dd
 
 
68c48e6
 
 
c0490dd
fcb0cff
c0490dd
 
 
68c48e6
fcb0cff
 
 
 
 
 
68c48e6
 
 
 
fcb0cff
 
c0490dd
fc033d7
 
 
68c48e6
fc033d7
 
 
 
 
 
68c48e6
fc033d7
68c48e6
fc033d7
 
 
b7032e9
 
fc033d7
b7032e9
fcb0cff
 
c0490dd
fcb0cff
 
 
 
c0490dd
 
68c48e6
c0490dd
 
68c48e6
c0490dd
fcb0cff
 
baa503f
 
68c48e6
baa503f
68c48e6
 
 
 
 
f81b3d1
6a500ed
68c48e6
 
 
 
 
f81b3d1
e5efe2c
c0490dd
68c48e6
f81b3d1
6a500ed
68c48e6
 
 
 
 
f81b3d1
6a500ed
68c48e6
 
 
c0490dd
 
 
 
fcb0cff
c0490dd
 
bfd8827
 
fcb0cff
c0490dd
fcb0cff
c0490dd
 
bc47113
 
c0490dd
 
bfd8827
c0490dd
fcb0cff
c0490dd
 
 
 
fcb0cff
c0490dd
fcb0cff
68c48e6
fcb0cff
c0490dd
fcb0cff
c0490dd
 
 
fcb0cff
c0490dd
 
fcb0cff
68c48e6
c0490dd
 
 
bc47113
c0490dd
 
 
 
 
 
 
fcb0cff
bfd8827
fcb0cff
 
 
 
 
 
 
 
 
 
68c48e6
fcb0cff
 
 
0d5c900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcb0cff
 
 
 
68c48e6
bfd8827
fcb0cff
 
68c48e6
fcb0cff
 
 
 
 
 
 
 
 
 
 
 
 
0d5c900
fcb0cff
 
 
 
 
 
 
 
68c48e6
fcb0cff
 
 
 
 
 
 
68c48e6
fcb0cff
 
 
 
 
 
 
 
68c48e6
fcb0cff
 
 
 
68c48e6
fcb0cff
 
 
 
 
 
 
c0490dd
68c48e6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import logging
import random
import warnings
import os
import shutil
import subprocess
import torch
import numpy as np
from diffusers import FluxControlNetModel
from diffusers.pipelines import FluxControlNetPipeline
from PIL import Image
from huggingface_hub import snapshot_download, login
import io
import base64
from flask import Flask, request, jsonify
from concurrent.futures import ThreadPoolExecutor
from flask_cors import CORS

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = Flask(__name__)
CORS(app)

# Function to check disk usage
def check_disk_space():
    result = subprocess.run(['df', '-h'], capture_output=True, text=True)
    logger.info("Disk space usage:\n%s", result.stdout)

# Function to clear Hugging Face cache
def clear_huggingface_cache():
    cache_dir = os.path.expanduser('~/.cache/huggingface')
    if os.path.exists(cache_dir):
        shutil.rmtree(cache_dir)  # Removes the entire cache directory
        logger.info("Cleared Hugging Face cache at: %s", cache_dir)
    else:
        logger.info("No Hugging Face cache found.")

# Check disk space
check_disk_space()

# Clear Hugging Face cache
clear_huggingface_cache()

# Add config to store base64 images
app.config['image_outputs'] = {}

# ThreadPoolExecutor for managing image processing threads
executor = ThreadPoolExecutor()

# Determine the device (GPU or CPU)
if torch.cuda.is_available():
    device = "cuda"
    logger.info("CUDA is available. Using GPU.")
else:
    device = "cpu"
    logger.info("CUDA is not available. Using CPU.")

# Load model from Huggingface Hub
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
if huggingface_token:
    login(token=huggingface_token)
    logger.info("Hugging Face token found and logged in.")
else:
    logger.warning("Hugging Face token not found in environment variables.")

logger.info("Hugging Face token: %s", huggingface_token)

# Download model using snapshot_download

model_path = snapshot_download(
        repo_id="black-forest-labs/FLUX.1-dev", 
        repo_type="model", 
        ignore_patterns=["*.md", "*..gitattributes"],
        local_dir="FLUX.1-dev",
        token=huggingface_token)
logger.info("Model downloaded to: %s", model_path)

# Load pipeline
logger.info('Loading ControlNet model.')

controlnet = FluxControlNetModel.from_pretrained(
        "jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
    ).to(device)
logger.info("ControlNet model loaded successfully.")

logger.info('Loading pipeline.')

pipe = FluxControlNetPipeline.from_pretrained(
        model_path, controlnet=controlnet, torch_dtype=torch.bfloat16
    ).to(device)
logger.info("Pipeline loaded successfully.")

MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 1024 * 1024

def process_input(input_image, upscale_factor):
    w, h = input_image.size
    aspect_ratio = w / h
    was_resized = False

    # Resize if input size exceeds the maximum pixel budget
    if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
        warnings.warn(f"Requested output image is too large. Resizing to fit within pixel budget.")
        input_image = input_image.resize(
            (
                int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
                int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
            )
        )
        was_resized = True

    # Adjust dimensions to be a multiple of 8
    w, h = input_image.size
    w = w - w % 8
    h = h - h % 8

    return input_image.resize((w, h)), was_resized

def run_inference(process_id, input_image, upscale_factor, seed, num_inference_steps, controlnet_conditioning_scale):
    logger.info("Processing inference for process_id: %s", process_id)
    input_image, was_resized = process_input(input_image, upscale_factor)

    # Rescale image for ControlNet processing
    w, h = input_image.size
    control_image = input_image.resize((w * upscale_factor, h * upscale_factor))

    # Set the random generator for inference
    generator = torch.Generator().manual_seed(seed)

    # Perform inference using the pipeline
    logger.info("Running pipeline for process_id: %s", process_id)
    image = pipe(
        prompt="",
        control_image=control_image,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        num_inference_steps=num_inference_steps,
        guidance_scale=3.5,
        height=control_image.size[1],
        width=control_image.size[0],
        generator=generator,
    ).images[0]

    # Resize output image back to the original dimensions if needed
    if was_resized:
        original_size = (input_image.width * upscale_factor, input_image.height * upscale_factor)
        image = image.resize(original_size)

    # Convert the output image to base64
    buffered = io.BytesIO()
    image.save(buffered, format="JPEG")
    image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")

    # Store the result in the shared dictionary
    app.config['image_outputs'][process_id] = image_base64
    logger.info("Inference completed for process_id: %s", process_id)

@app.route('/infer', methods=['POST'])
def infer():
    # Check if the file was provided in the form-data
    if 'input_image' not in request.files:
        logger.error("No image file provided in request.")
        return jsonify({
            "status": "error",
            "message": "No input_image file provided"
        }), 400

    # Get the uploaded image file from the request
    file = request.files['input_image']

    # Check if a file was uploaded
    if file.filename == '':
        logger.error("No selected file in form-data.")
        return jsonify({
            "status": "error",
            "message": "No selected file"
        }), 400

    # Convert the image to Base64 for internal processing
    input_image = Image.open(file)
    buffered = io.BytesIO()
    input_image.save(buffered, format="JPEG")

    # Retrieve additional parameters from the request (if any)
    seed = request.form.get("seed", 42, type=int)
    randomize_seed = request.form.get("randomize_seed", 'true').lower() == 'true'
    num_inference_steps = request.form.get("num_inference_steps", 28, type=int)
    upscale_factor = request.form.get("upscale_factor", 4, type=int)
    controlnet_conditioning_scale = request.form.get("controlnet_conditioning_scale", 0.6, type=float)

    # Randomize seed if specified
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        logger.info("Seed randomized to: %d", seed)

    # Create a unique process ID for this request
    process_id = str(random.randint(1000, 9999))
    logger.info("Process started with process_id: %s", process_id)

    # Set the status to 'in_progress'
    app.config['image_outputs'][process_id] = None

    # Run the inference in a separate thread
    executor.submit(run_inference, process_id, input_image, upscale_factor, seed, num_inference_steps, controlnet_conditioning_scale)

    # Return the process ID
    return jsonify({
        "process_id": process_id,
        "message": "Processing started"
    })


# Modify status endpoint to receive process_id in request body
@app.route('/status', methods=['POST'])
def status():
    data = request.json
    process_id = data.get('process_id')

    # Check if process_id was provided
    if not process_id:
        logger.error("Process ID not provided in request.")
        return jsonify({
            "status": "error",
            "message": "Process ID is required"
        }), 400

    # Check if the process_id exists in the dictionary
    if process_id not in app.config['image_outputs']:
        logger.error("Invalid process ID: %s", process_id)
        return jsonify({
            "status": "error",
            "message": "Invalid process ID"
        }), 404

    # Check the status of the image processing
    image_base64 = app.config['image_outputs'][process_id]
    if image_base64 is None:
        logger.info("Process ID %s is still in progress.", process_id)
        return jsonify({
            "status": "in_progress"
        })
    else:
        logger.info("Process ID %s completed successfully.", process_id)
        return jsonify({
            "status": "completed",
            "output_image": image_base64
        })

if __name__ == '__main__':
    app.run(debug=True)