mdanish commited on
Commit
a541289
·
verified ·
1 Parent(s): 17e1fb7

Upload requirements.txt with huggingface_hub

Browse files
Files changed (1) hide show
  1. requirements.txt +6 -121
requirements.txt CHANGED
@@ -1,121 +1,6 @@
1
- import streamlit as st
2
- from PIL import Image
3
- import numpy as np
4
- import torch
5
- from sklearn.utils.extmath import softmax
6
- import open_clip
7
-
8
- #from transformers import CLIPProcessor, CLIPModel
9
-
10
- knnpath = '20241204-ams-no-env-open_clip_ViT-H-14-378-quickgelu.npz'
11
- clip_model_name = 'ViT-H-14-378-quickgelu'
12
- pretrained_name = 'dfn5b'
13
-
14
- categories = ['walkability', 'bikeability', 'pleasantness', 'greenness', 'safety']
15
-
16
- # Set page config
17
- st.set_page_config(
18
- page_title="Percept",
19
- layout="wide"
20
- )
21
-
22
- debug = True
23
-
24
- #st.write("Available models:", open_clip.list_models())
25
-
26
- @st.cache_resource
27
- def load_model():
28
- """Load the OpenCLIP model and return model and processor"""
29
- model, _, preprocess = open_clip.create_model_and_transforms(
30
- clip_model_name, pretrained=pretrained_name
31
- )
32
- tokenizer = open_clip.get_tokenizer(clip_model_name)
33
- return model, preprocess, tokenizer
34
-
35
- def process_image(image, preprocess):
36
- """Process image and return tensor"""
37
- if isinstance(image, str):
38
- # If image is a URL
39
- response = requests.get(image)
40
- image = Image.open(BytesIO(response.content))
41
- # Ensure image is in RGB mode
42
- if image.mode != 'RGB':
43
- image = image.convert('RGB')
44
- processed_image = preprocess(image).unsqueeze(0)
45
- return processed_image
46
-
47
- def knn_get_score(knn, k, cat, vec):
48
- allvecs = knn[f'{cat}_vecs']
49
- if debug: st.write('allvecs.shape', allvecs.shape)
50
- scores = knn[f'{cat}_scores']
51
- if debug: st.write('scores.shape', scores.shape)
52
- # Compute cosine similiarity of vec against allvecs
53
- # (both are already normalized)
54
- cos_sim_table = vec @ allvecs.T
55
- if debug: st.write('cos_sim_table.shape', cos_sim_table.shape)
56
- # Get sorted array indices by similiarity in descending order
57
- sortinds = np.flip(np.argsort(cos_sim_table, axis=1), axis=1)
58
- if debug: st.write('sortinds.shape', sortinds.shape)
59
- # Get corresponding scores for the sorted vectors
60
- kscores = scores[sortinds][:k]
61
- if debug: st.write('kscores.shape', kscores.shape)
62
- # Get actual sorted similiarity scores
63
- ksims = cos_sim_table[:, sortinds][:,:k]
64
- if debug: st.write('ksims.shape', ksims.shape)
65
- # Apply normalization after exponential formula
66
- ksims = softmax(10**ksims)
67
- # Weighted sum
68
- kweightedscore = np.sum(kscores * ksims)
69
- return kweightedscore
70
-
71
-
72
- @st.cache_resource
73
- def load_knn():
74
- return np.load(knnpath)
75
-
76
- def main():
77
- st.title("Percept: Human Perception of Street View Image Analyzer")
78
-
79
- try:
80
- with st.spinner('Loading CLIP model... This may take a moment.'):
81
- model, preprocess, tokenizer = load_model()
82
- device = "cuda" if torch.cuda.is_available() else "cpu"
83
- model = model.to(device)
84
- except Exception as e:
85
- st.error(f"Error loading model: {str(e)}")
86
- st.info("Please make sure you have enough memory and the correct dependencies installed.")
87
-
88
- with st.spinner('Loading KNN model... This may take a moment.'):
89
- knn = load_knn()
90
- if debug: st.write(knn['walkability_vecs'].shape)
91
-
92
- file = st.file_uploader('Upload An Image')
93
-
94
- if file:
95
- try:
96
- image = Image.open(file)
97
-
98
- st.image(image, caption="Uploaded Image", width=640)
99
-
100
- # Process image
101
- with st.spinner('Processing image...'):
102
- processed_image = process_image(image, preprocess)
103
- processed_image = processed_image.to(device)
104
-
105
- # Encode into CLIP vector
106
- with torch.no_grad():
107
- vec = model.encode_image(processed_image)
108
-
109
- # Normalize vector
110
- vec /= vec.norm(dim=-1, keepdim=True)
111
- if debug: st.write(vec.shape)
112
- vec = vec.numpy()
113
- k = 40
114
- for cat in ['walkability']:
115
- st.write(cat, 'rating =', knn_get_score(knn, k, cat, vec))
116
-
117
- except Exception as e:
118
- st.error(f"Error processing image: {str(e)}")
119
-
120
- if __name__ == "__main__":
121
- main()
 
1
+ streamlit
2
+ torch
3
+ open_clip-torch
4
+ Pillow
5
+ requests
6
+ scikit-learn