|
import cv2 |
|
import numpy as np |
|
import csv |
|
import math |
|
import torch |
|
import tempfile |
|
import os |
|
import gradio as gr |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
print(f"Using device: {device}") |
|
model = torch.hub.load("princeton-vl/RAFT", "raft_small", pretrained=True) |
|
model = model.to(device) |
|
model.eval() |
|
|
|
def generate_motion_csv(video_file, output_csv=None): |
|
""" |
|
Uses the RAFT model to compute optical flow between consecutive frames, |
|
then writes a CSV file (with columns: frame, mag, ang, zoom) where: |
|
- mag: median magnitude of the flow, |
|
- ang: median angle (in degrees), and |
|
- zoom: fraction of pixels moving away from the image center. |
|
|
|
Args: |
|
video_file (str): Path to the input video. |
|
output_csv (str): Optional path for output CSV file. If None, a temporary file is used. |
|
|
|
Returns: |
|
output_csv (str): Path to the generated CSV file. |
|
""" |
|
if output_csv is None: |
|
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.csv') |
|
output_csv = temp_file.name |
|
temp_file.close() |
|
|
|
cap = cv2.VideoCapture(video_file) |
|
if not cap.isOpened(): |
|
raise ValueError("Could not open video file for CSV generation.") |
|
|
|
|
|
with open(output_csv, 'w', newline='') as csvfile: |
|
fieldnames = ['frame', 'mag', 'ang', 'zoom'] |
|
writer = csv.DictWriter(csvfile, fieldnames=fieldnames) |
|
writer.writeheader() |
|
|
|
ret, prev_frame = cap.read() |
|
if not ret: |
|
raise ValueError("Cannot read first frame from video.") |
|
|
|
|
|
prev_frame_rgb = cv2.cvtColor(prev_frame, cv2.COLOR_BGR2RGB) |
|
prev_tensor = torch.from_numpy(prev_frame_rgb).permute(2,0,1).float().unsqueeze(0) / 255.0 |
|
prev_tensor = prev_tensor.to(device) |
|
|
|
frame_idx = 1 |
|
while True: |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
|
|
curr_frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
curr_tensor = torch.from_numpy(curr_frame_rgb).permute(2,0,1).float().unsqueeze(0) / 255.0 |
|
curr_tensor = curr_tensor.to(device) |
|
|
|
|
|
with torch.no_grad(): |
|
|
|
flow_low, flow_up = model(prev_tensor, curr_tensor, iters=20, test_mode=True) |
|
|
|
flow = flow_up[0].permute(1,2,0).cpu().numpy() |
|
|
|
|
|
mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1], angleInDegrees=True) |
|
median_mag = np.median(mag) |
|
median_ang = np.median(ang) |
|
|
|
|
|
h, w = flow.shape[:2] |
|
center_x, center_y = w / 2, h / 2 |
|
x_coords, y_coords = np.meshgrid(np.arange(w), np.arange(h)) |
|
x_offset = x_coords - center_x |
|
y_offset = y_coords - center_y |
|
|
|
dot = flow[...,0] * x_offset + flow[...,1] * y_offset |
|
zoom_factor = np.count_nonzero(dot > 0) / (w * h) |
|
|
|
|
|
writer.writerow({ |
|
'frame': frame_idx, |
|
'mag': median_mag, |
|
'ang': median_ang, |
|
'zoom': zoom_factor |
|
}) |
|
|
|
|
|
prev_tensor = curr_tensor.clone() |
|
frame_idx += 1 |
|
|
|
cap.release() |
|
print(f"Motion CSV generated: {output_csv}") |
|
return output_csv |
|
|
|
def read_motion_csv(csv_filename): |
|
""" |
|
Reads the CSV file (columns: frame, mag, ang, zoom) and computes a cumulative |
|
offset per frame to be used for stabilization. |
|
|
|
Returns: |
|
A dictionary mapping frame numbers to (dx, dy) offsets (the negative cumulative displacement). |
|
""" |
|
motion_data = {} |
|
cumulative_dx = 0.0 |
|
cumulative_dy = 0.0 |
|
with open(csv_filename, 'r') as csvfile: |
|
reader = csv.DictReader(csvfile) |
|
for row in reader: |
|
frame_num = int(row['frame']) |
|
mag = float(row['mag']) |
|
ang = float(row['ang']) |
|
|
|
rad = math.radians(ang) |
|
dx = mag * math.cos(rad) |
|
dy = mag * math.sin(rad) |
|
cumulative_dx += dx |
|
cumulative_dy += dy |
|
|
|
motion_data[frame_num] = (-cumulative_dx, -cumulative_dy) |
|
return motion_data |
|
|
|
def stabilize_video_using_csv(video_file, csv_file, zoom=1.0, output_file=None): |
|
""" |
|
Stabilizes the input video using motion data from the CSV file. |
|
|
|
Args: |
|
video_file (str): Path to the input video. |
|
csv_file (str): Path to the motion CSV file. |
|
zoom (float): Zoom factor to apply before stabilization (default: 1.0, no zoom). |
|
output_file (str): Path for the output stabilized video. If None, a temporary file is created. |
|
|
|
Returns: |
|
output_file (str): Path to the stabilized video file. |
|
""" |
|
|
|
motion_data = read_motion_csv(csv_file) |
|
|
|
cap = cv2.VideoCapture(video_file) |
|
if not cap.isOpened(): |
|
raise ValueError("Could not open video file for stabilization.") |
|
|
|
fps = cap.get(cv2.CAP_PROP_FPS) |
|
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
|
|
if output_file is None: |
|
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') |
|
output_file = temp_file.name |
|
temp_file.close() |
|
|
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v') |
|
out = cv2.VideoWriter(output_file, fourcc, fps, (width, height)) |
|
|
|
frame_num = 1 |
|
while True: |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
|
|
|
|
if zoom != 1.0: |
|
zoomed_frame = cv2.resize(frame, None, fx=zoom, fy=zoom, interpolation=cv2.INTER_LINEAR) |
|
zoomed_h, zoomed_w = zoomed_frame.shape[:2] |
|
start_x = max((zoomed_w - width) // 2, 0) |
|
start_y = max((zoomed_h - height) // 2, 0) |
|
frame = zoomed_frame[start_y:start_y+height, start_x:start_x+width] |
|
|
|
|
|
dx, dy = motion_data.get(frame_num, (0, 0)) |
|
|
|
|
|
transform = np.array([[1, 0, dx], |
|
[0, 1, dy]], dtype=np.float32) |
|
stabilized_frame = cv2.warpAffine(frame, transform, (width, height)) |
|
|
|
out.write(stabilized_frame) |
|
frame_num += 1 |
|
|
|
cap.release() |
|
out.release() |
|
print(f"Stabilized video saved to: {output_file}") |
|
return output_file |
|
|
|
def process_video_ai(video_file, zoom): |
|
""" |
|
Gradio interface function: Given an input video and a zoom factor, |
|
it uses a deep learning model (RAFT) to generate motion data (video.flow.csv) |
|
and then stabilizes the video based on that data. |
|
|
|
Returns: |
|
A tuple containing the original video file path and the stabilized video file path. |
|
""" |
|
|
|
if isinstance(video_file, dict): |
|
video_file = video_file.get("name", None) |
|
if video_file is None: |
|
raise ValueError("Please upload a video file.") |
|
|
|
|
|
csv_file = generate_motion_csv(video_file) |
|
|
|
stabilized_path = stabilize_video_using_csv(video_file, csv_file, zoom=zoom) |
|
return video_file, stabilized_path |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# AI-Powered Video Stabilization") |
|
gr.Markdown("Upload a video and select a zoom factor. The system will automatically use a deep learning model (RAFT) to generate motion data and then stabilize the video.") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
video_input = gr.Video(label="Input Video") |
|
zoom_slider = gr.Slider(minimum=1.0, maximum=2.0, step=0.1, value=1.0, label="Zoom Factor") |
|
process_button = gr.Button("Process Video") |
|
with gr.Column(): |
|
original_video = gr.Video(label="Original Video") |
|
stabilized_video = gr.Video(label="Stabilized Video") |
|
|
|
process_button.click( |
|
fn=process_video_ai, |
|
inputs=[video_input, zoom_slider], |
|
outputs=[original_video, stabilized_video] |
|
) |
|
|
|
demo.launch() |
|
|