SpyC0der77's picture
Update app.py
7561365 verified
raw
history blame
9.18 kB
import cv2
import numpy as np
import csv
import math
import torch
import tempfile
import os
import gradio as gr
# Load the RAFT model from torch.hub (uses the 'raft_small' variant)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
model = torch.hub.load("princeton-vl/RAFT", "raft_small", pretrained=True)
model = model.to(device)
model.eval()
def generate_motion_csv(video_file, output_csv=None):
"""
Uses the RAFT model to compute optical flow between consecutive frames,
then writes a CSV file (with columns: frame, mag, ang, zoom) where:
- mag: median magnitude of the flow,
- ang: median angle (in degrees), and
- zoom: fraction of pixels moving away from the image center.
Args:
video_file (str): Path to the input video.
output_csv (str): Optional path for output CSV file. If None, a temporary file is used.
Returns:
output_csv (str): Path to the generated CSV file.
"""
if output_csv is None:
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.csv')
output_csv = temp_file.name
temp_file.close()
cap = cv2.VideoCapture(video_file)
if not cap.isOpened():
raise ValueError("Could not open video file for CSV generation.")
# Prepare CSV file for writing
with open(output_csv, 'w', newline='') as csvfile:
fieldnames = ['frame', 'mag', 'ang', 'zoom']
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
ret, prev_frame = cap.read()
if not ret:
raise ValueError("Cannot read first frame from video.")
# Convert the first frame to tensor
prev_frame_rgb = cv2.cvtColor(prev_frame, cv2.COLOR_BGR2RGB)
prev_tensor = torch.from_numpy(prev_frame_rgb).permute(2,0,1).float().unsqueeze(0) / 255.0
prev_tensor = prev_tensor.to(device)
frame_idx = 1
while True:
ret, frame = cap.read()
if not ret:
break
curr_frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
curr_tensor = torch.from_numpy(curr_frame_rgb).permute(2,0,1).float().unsqueeze(0) / 255.0
curr_tensor = curr_tensor.to(device)
# Use RAFT to compute optical flow between previous and current frame.
with torch.no_grad():
# The RAFT model returns a low-resolution flow and an upsampled (high-res) flow.
flow_low, flow_up = model(prev_tensor, curr_tensor, iters=20, test_mode=True)
# Convert flow to numpy array (shape: H x W x 2)
flow = flow_up[0].permute(1,2,0).cpu().numpy()
# Compute median magnitude and angle for the optical flow
mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1], angleInDegrees=True)
median_mag = np.median(mag)
median_ang = np.median(ang)
# Compute a "zoom factor": fraction of pixels moving away from the center.
h, w = flow.shape[:2]
center_x, center_y = w / 2, h / 2
x_coords, y_coords = np.meshgrid(np.arange(w), np.arange(h))
x_offset = x_coords - center_x
y_offset = y_coords - center_y
# Dot product between flow vectors and pixel offsets:
dot = flow[...,0] * x_offset + flow[...,1] * y_offset
zoom_factor = np.count_nonzero(dot > 0) / (w * h)
# Write the computed metrics to the CSV file.
writer.writerow({
'frame': frame_idx,
'mag': median_mag,
'ang': median_ang,
'zoom': zoom_factor
})
# Update for next iteration
prev_tensor = curr_tensor.clone()
frame_idx += 1
cap.release()
print(f"Motion CSV generated: {output_csv}")
return output_csv
def read_motion_csv(csv_filename):
"""
Reads the CSV file (columns: frame, mag, ang, zoom) and computes a cumulative
offset per frame to be used for stabilization.
Returns:
A dictionary mapping frame numbers to (dx, dy) offsets (the negative cumulative displacement).
"""
motion_data = {}
cumulative_dx = 0.0
cumulative_dy = 0.0
with open(csv_filename, 'r') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
frame_num = int(row['frame'])
mag = float(row['mag'])
ang = float(row['ang'])
# Convert angle (in degrees) to radians.
rad = math.radians(ang)
dx = mag * math.cos(rad)
dy = mag * math.sin(rad)
cumulative_dx += dx
cumulative_dy += dy
# Negative cumulative offset counteracts the detected motion.
motion_data[frame_num] = (-cumulative_dx, -cumulative_dy)
return motion_data
def stabilize_video_using_csv(video_file, csv_file, zoom=1.0, output_file=None):
"""
Stabilizes the input video using motion data from the CSV file.
Args:
video_file (str): Path to the input video.
csv_file (str): Path to the motion CSV file.
zoom (float): Zoom factor to apply before stabilization (default: 1.0, no zoom).
output_file (str): Path for the output stabilized video. If None, a temporary file is created.
Returns:
output_file (str): Path to the stabilized video file.
"""
# Read motion data from CSV
motion_data = read_motion_csv(csv_file)
cap = cv2.VideoCapture(video_file)
if not cap.isOpened():
raise ValueError("Could not open video file for stabilization.")
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
if output_file is None:
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
output_file = temp_file.name
temp_file.close()
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_file, fourcc, fps, (width, height))
frame_num = 1
while True:
ret, frame = cap.read()
if not ret:
break
# Optionally apply zoom (resize and center-crop)
if zoom != 1.0:
zoomed_frame = cv2.resize(frame, None, fx=zoom, fy=zoom, interpolation=cv2.INTER_LINEAR)
zoomed_h, zoomed_w = zoomed_frame.shape[:2]
start_x = max((zoomed_w - width) // 2, 0)
start_y = max((zoomed_h - height) // 2, 0)
frame = zoomed_frame[start_y:start_y+height, start_x:start_x+width]
# Get the stabilization offset for the current frame (default to (0,0) if not available)
dx, dy = motion_data.get(frame_num, (0, 0))
# Apply an affine transformation to counteract the motion.
transform = np.array([[1, 0, dx],
[0, 1, dy]], dtype=np.float32)
stabilized_frame = cv2.warpAffine(frame, transform, (width, height))
out.write(stabilized_frame)
frame_num += 1
cap.release()
out.release()
print(f"Stabilized video saved to: {output_file}")
return output_file
def process_video_ai(video_file, zoom):
"""
Gradio interface function: Given an input video and a zoom factor,
it uses a deep learning model (RAFT) to generate motion data (video.flow.csv)
and then stabilizes the video based on that data.
Returns:
A tuple containing the original video file path and the stabilized video file path.
"""
# Ensure the input is a file path (if provided as a dict, extract the "name")
if isinstance(video_file, dict):
video_file = video_file.get("name", None)
if video_file is None:
raise ValueError("Please upload a video file.")
# Generate motion CSV using AI-based optical flow (RAFT)
csv_file = generate_motion_csv(video_file)
# Stabilize the video using the generated CSV data
stabilized_path = stabilize_video_using_csv(video_file, csv_file, zoom=zoom)
return video_file, stabilized_path
# Build the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# AI-Powered Video Stabilization")
gr.Markdown("Upload a video and select a zoom factor. The system will automatically use a deep learning model (RAFT) to generate motion data and then stabilize the video.")
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Input Video")
zoom_slider = gr.Slider(minimum=1.0, maximum=2.0, step=0.1, value=1.0, label="Zoom Factor")
process_button = gr.Button("Process Video")
with gr.Column():
original_video = gr.Video(label="Original Video")
stabilized_video = gr.Video(label="Stabilized Video")
process_button.click(
fn=process_video_ai,
inputs=[video_input, zoom_slider],
outputs=[original_video, stabilized_video]
)
demo.launch()