File size: 3,945 Bytes
66a500b
 
 
 
 
 
a52d3e7
6149114
 
a52d3e7
66a500b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a52d3e7
66a500b
 
a52d3e7
66a500b
a52d3e7
 
66a500b
a52d3e7
66a500b
 
a52d3e7
 
66a500b
 
 
a52d3e7
66a500b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a52d3e7
66a500b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a52d3e7
66a500b
 
 
 
 
 
 
a52d3e7
66a500b
 
 
 
 
 
 
 
a52d3e7
66a500b
 
 
 
 
 
 
a52d3e7
66a500b
 
 
a52d3e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66a500b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch

# Load the pipeline
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev")
pipe.load_lora_weights("EvanZhouDev/open-genmoji")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
):
    # Handle seed randomization
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.manual_seed(seed)

    # Generate the image using the pipeline
    result = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt if negative_prompt else None,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        generator=generator,
    ).images[0]

    return result, seed

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image Gradio Template")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Default width for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Default height for your model
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.5,  # Default guidance scale for your model
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=25,  # Default number of inference steps for your model
                )

        gr.Examples(examples=examples, inputs=[prompt])

        run_button.click(
            infer,
            inputs=[
                prompt,
                negative_prompt,
                seed,
                randomize_seed,
                width,
                height,
                guidance_scale,
                num_inference_steps,
            ],
            outputs=[result, seed],
        )

if __name__ == "__main__":
    demo.launch()