Genmoji / app.py
SpyC0der77's picture
Update app.py
ee7865a verified
raw
history blame
3.92 kB
import gradio as gr
from huggingface_hub import InferenceClient
import os
from datetime import datetime
import json
# Initialize clients
client = InferenceClient("EvanZhouDev/open-genmoji", token=os.getenv("HUGGINGFACE_API_TOKEN"))
llm = InferenceClient("Qwen/Qwen2.5-72B-Instruct")
# Ensure output directories exist
os.makedirs("outputs/images", exist_ok=True)
# Define the process function
def process(prompt, steps, seed, quantize, guidance, width, height):
print(f"Prompt: {prompt}")
messages = [
{
"role": "system",
"content": (
"You are helping create a prompt for a Emoji generation image model. An emoji must be easily "
"interpreted when small so details must be exaggerated to be clear. Your goal is to use descriptions "
"to achieve this.\n\nYou will receive a user description, and you must rephrase it to consist of "
"short phrases separated by periods, adding detail to everything the user provides.\n\nAdd describe "
"the color of all parts or components of the emoji. Unless otherwise specified by the user, do not "
"describe people. Do not describe the background of the image. Your output should be in the format:\n\n"
"```emoji of {description}. {addon phrases}. 3D lighting. no cast shadows.```\n\nThe description "
"should be a 1 sentence of your interpretation of the emoji. Then, you may choose to add addon phrases."
" You must use the following in the given scenarios:\n\n- \"cute.\": If generating anything that's not "
"an object, and also not a human\n- \"enlarged head in cartoon style.\": ONLY animals\n- \"head is "
"turned towards viewer.\": ONLY humans or animals\n- \"detailed texture.\": ONLY objects\n\nFurther "
"addon phrases may be added to ensure the clarity of the emoji."
),
},
{"role": "user", "content": prompt},
]
completion = llm.chat_completion(messages, max_tokens=100)
response = completion.get("choices")[0].get("message").get("content").replace("```", "").replace("\n", "")
print(f"Refined Prompt: {response}")
time = datetime.now().strftime("%Y%m%d%H%M%S")
image = client.text_to_image(response, steps=steps, seed=seed, quantize=quantize, guidance=guidance, width=width, height=height)
image.save(f"outputs/images/{time}.png")
with open(f"outputs/{time}.json", "w") as f:
json.dump({"prompt": prompt, "refined_prompt": response, "image": f"outputs/images/{time}.png"}, f)
return image
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Emoji Generator with Customizable Parameters")
# Input fields
with gr.Row():
prompt_input = gr.Textbox(label="Enter a prompt")
steps_input = gr.Slider(label="Steps", minimum=1, maximum=50, value=20, step=1)
with gr.Row():
seed_input = gr.Number(label="Seed", value=2, precision=0)
quantize_input = gr.Slider(label="Quantize", minimum=1, maximum=16, value=8, step=1)
with gr.Row():
guidance_input = gr.Slider(label="Guidance", minimum=1.0, maximum=10.0, value=5.0, step=0.1)
width_input = gr.Slider(label="Width", minimum=256, maximum=2048, value=1280, step=64)
height_input = gr.Slider(label="Height", minimum=256, maximum=2048, value=640, step=64)
# Output
image_output = gr.Image(label="Generated Image")
# Button to generate the image
generate_button = gr.Button("Generate Image")
# Define button click behavior
generate_button.click(
fn=process,
inputs=[prompt_input, steps_input, seed_input, quantize_input, guidance_input, width_input, height_input],
outputs=image_output,
)
# Launch the app
if __name__ == "__main__":
demo.launch(show_error=True)