Spaces:
Runtime error
Runtime error
File size: 12,405 Bytes
1a942eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
"""Module which defines functions to manage voice models."""
import re
import shutil
import urllib.request
import zipfile
from _collections_abc import Sequence
from pathlib import Path
import gradio as gr
from ultimate_rvc.common import RVC_MODELS_DIR
from ultimate_rvc.core.common import (
FLAG_FILE,
copy_files_to_new_dir,
display_progress,
json_load,
validate_url,
)
from ultimate_rvc.core.exceptions import (
Entity,
Location,
NotFoundError,
NotProvidedError,
UIMessage,
UploadFormatError,
UploadLimitError,
VoiceModelExistsError,
VoiceModelNotFoundError,
)
from ultimate_rvc.core.typing_extra import (
ModelMetaData,
ModelMetaDataList,
ModelMetaDataPredicate,
ModelMetaDataTable,
ModelTagName,
)
from ultimate_rvc.typing_extra import StrPath
PUBLIC_MODELS_JSON = json_load(Path(__file__).parent / "public_models.json")
PUBLIC_MODELS_TABLE = ModelMetaDataTable.model_validate(PUBLIC_MODELS_JSON)
def get_saved_model_names() -> list[str]:
"""
Get the names of all saved voice models.
Returns
-------
list[str]
A list of names of all saved voice models.
"""
model_paths = RVC_MODELS_DIR.iterdir()
names_to_remove = ["hubert_base.pt", "rmvpe.pt", FLAG_FILE.name]
return sorted([
model_path.name
for model_path in model_paths
if model_path.name not in names_to_remove
])
def load_public_models_table(
predicates: Sequence[ModelMetaDataPredicate],
) -> ModelMetaDataList:
"""
Load table containing metadata of public voice models, optionally
filtered by a set of predicates.
Parameters
----------
predicates : Sequence[ModelMetaDataPredicate]
Predicates to filter the metadata table by.
Returns
-------
ModelMetaDataList
List containing metadata for each public voice model that
satisfies the given predicates.
"""
return [
[
model.name,
model.description,
model.tags,
model.credit,
model.added,
model.url,
]
for model in PUBLIC_MODELS_TABLE.models
if all(predicate(model) for predicate in predicates)
]
def get_public_model_tags() -> list[ModelTagName]:
"""
get the names of all valid public voice model tags.
Returns
-------
list[str]
A list of names of all valid public voice model tags.
"""
return [tag.name for tag in PUBLIC_MODELS_TABLE.tags]
def filter_public_models_table(
tags: Sequence[str],
query: str,
) -> ModelMetaDataList:
"""
Filter table containing metadata of public voice models by tags and
a search query.
The search query is matched against the name, description, tags,
credit,and added date of each entry in the metadata table. Case
insensitive search is performed. If the search query is empty, the
metadata table is filtered only bythe given tags.
Parameters
----------
tags : Sequence[str]
Tags to filter the metadata table by.
query : str
Search query to filter the metadata table by.
Returns
-------
ModelMetaDataList
List containing metadata for each public voice model that
match the given tags and search query.
"""
def _tags_predicate(model: ModelMetaData) -> bool:
return all(tag in model.tags for tag in tags)
def _query_predicate(model: ModelMetaData) -> bool:
return (
query.lower()
in (
f"{model.name} {model.description} {' '.join(model.tags)} "
f"{model.credit} {model.added}"
).lower()
if query
else True
)
filter_fns = [_tags_predicate, _query_predicate]
return load_public_models_table(filter_fns)
def _extract_model(
zip_file: StrPath,
extraction_dir: StrPath,
remove_incomplete: bool = True,
remove_zip: bool = False,
) -> None:
"""
Extract a zipped voice model to a directory.
Parameters
----------
zip_file : StrPath
The path to a zip file containing the voice model to extract.
extraction_dir : StrPath
The path to the directory to extract the voice model to.
remove_incomplete : bool, default=True
Whether to remove the extraction directory if the extraction
process fails.
remove_zip : bool, default=False
Whether to remove the zip file once the extraction process is
complete.
Raises
------
NotFoundError
If no model file is found in the extracted zip file.
"""
extraction_path = Path(extraction_dir)
zip_path = Path(zip_file)
extraction_completed = False
try:
extraction_path.mkdir(parents=True)
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(extraction_path)
file_path_map = {
ext: Path(root, name)
for root, _, files in extraction_path.walk()
for name in files
for ext in [".index", ".pth"]
if Path(name).suffix == ext
and Path(root, name).stat().st_size
> 1024 * (100 if ext == ".index" else 1024 * 40)
}
if ".pth" not in file_path_map:
raise NotFoundError(
entity=Entity.MODEL_FILE,
location=Location.EXTRACTED_ZIP_FILE,
is_path=False,
)
# move model and index file to root of the extraction directory
for file_path in file_path_map.values():
file_path.rename(extraction_path / file_path.name)
# remove any sub-directories within the extraction directory
for path in extraction_path.iterdir():
if path.is_dir():
shutil.rmtree(path)
extraction_completed = True
finally:
if not extraction_completed and remove_incomplete and extraction_path.is_dir():
shutil.rmtree(extraction_path)
if remove_zip and zip_path.exists():
zip_path.unlink()
def download_model(
url: str,
name: str,
progress_bar: gr.Progress | None = None,
percentages: tuple[float, float] = (0.0, 0.5),
) -> None:
"""
Download a zipped voice model.
Parameters
----------
url : str
An URL pointing to a location where the zipped voice model can
be downloaded from.
name : str
The name to give to the downloaded voice model.
progress_bar : gr.Progress, optional
Gradio progress bar to update.
percentages : tuple[float, float], default=(0.0, 0.5)
Percentages to display in the progress bar.
Raises
------
NotProvidedError
If no URL or name is provided.
VoiceModelExistsError
If a voice model with the provided name already exists.
"""
if not url:
raise NotProvidedError(entity=Entity.URL)
if not name:
raise NotProvidedError(entity=Entity.MODEL_NAME)
extraction_path = RVC_MODELS_DIR / name
if extraction_path.exists():
raise VoiceModelExistsError(name)
validate_url(url)
zip_name = url.split("/")[-1].split("?")[0]
# NOTE in case huggingface link is a direct link rather
# than a resolve link then convert it to a resolve link
url = re.sub(
r"https://huggingface.co/([^/]+)/([^/]+)/blob/(.*)",
r"https://huggingface.co/\1/\2/resolve/\3",
url,
)
if "pixeldrain.com" in url:
url = f"https://pixeldrain.com/api/file/{zip_name}"
display_progress(
"[~] Downloading voice model ...",
percentages[0],
progress_bar,
)
urllib.request.urlretrieve(url, zip_name) # noqa: S310
display_progress("[~] Extracting zip file...", percentages[1], progress_bar)
_extract_model(zip_name, extraction_path, remove_zip=True)
def upload_model(
files: Sequence[StrPath],
name: str,
progress_bar: gr.Progress | None = None,
percentage: float = 0.5,
) -> None:
"""
Upload a voice model from either a zip file or a .pth file and an
optional index file.
Parameters
----------
files : Sequence[StrPath]
Paths to the files to upload.
name : str
The name to give to the uploaded voice model.
progress_bar : gr.Progress, optional
Gradio progress bar to update.
percentage : float, default=0.5
Percentage to display in the progress bar.
Raises
------
NotProvidedError
If no file paths or name are provided.
VoiceModelExistsError
If a voice model with the provided name already
exists.
UploadFormatError
If a single uploaded file is not a .pth file or a .zip file.
If two uploaded files are not a .pth file and an .index file.
UploadLimitError
If more than two file paths are provided.
"""
if not files:
raise NotProvidedError(entity=Entity.FILES, ui_msg=UIMessage.NO_UPLOADED_FILES)
if not name:
raise NotProvidedError(entity=Entity.MODEL_NAME)
model_dir_path = RVC_MODELS_DIR / name
if model_dir_path.exists():
raise VoiceModelExistsError(name)
sorted_file_paths = sorted([Path(f) for f in files], key=lambda f: f.suffix)
match sorted_file_paths:
case [file_path]:
if file_path.suffix == ".pth":
display_progress("[~] Copying .pth file ...", percentage, progress_bar)
copy_files_to_new_dir([file_path], model_dir_path)
# NOTE a .pth file is actually itself a zip file
elif zipfile.is_zipfile(file_path):
display_progress("[~] Extracting zip file...", percentage, progress_bar)
_extract_model(file_path, model_dir_path)
else:
raise UploadFormatError(
entity=Entity.FILES,
formats=[".pth", ".zip"],
multiple=False,
)
case [index_path, pth_path]:
if index_path.suffix == ".index" and pth_path.suffix == ".pth":
display_progress(
"[~] Copying .pth file and index file ...",
percentage,
progress_bar,
)
copy_files_to_new_dir([index_path, pth_path], model_dir_path)
else:
raise UploadFormatError(
entity=Entity.FILES,
formats=[".pth", ".index"],
multiple=True,
)
case _:
raise UploadLimitError(entity=Entity.FILES, limit="two")
def delete_models(
names: Sequence[str],
progress_bar: gr.Progress | None = None,
percentage: float = 0.5,
) -> None:
"""
Delete one or more voice models.
Parameters
----------
names : Sequence[str]
Names of the voice models to delete.
progress_bar : gr.Progress, optional
Gradio progress bar to update.
percentage : float, default=0.5
Percentage to display in the progress bar.
Raises
------
NotProvidedError
If no names are provided.
VoiceModelNotFoundError
If a voice model with a provided name does not exist.
"""
if not names:
raise NotProvidedError(
entity=Entity.MODEL_NAMES,
ui_msg=UIMessage.NO_VOICE_MODELS,
)
display_progress(
"[~] Deleting voice models ...",
percentage,
progress_bar,
)
for name in names:
model_dir_path = RVC_MODELS_DIR / name
if not model_dir_path.is_dir():
raise VoiceModelNotFoundError(name)
shutil.rmtree(model_dir_path)
def delete_all_models(
progress_bar: gr.Progress | None = None,
percentage: float = 0.5,
) -> None:
"""
Delete all voice models.
Parameters
----------
progress_bar : gr.Progress, optional
Gradio progress bar to update.
percentage : float, default=0.5
Percentage to display in the progress bar.
"""
all_model_names = get_saved_model_names()
display_progress("[~] Deleting all voice models ...", percentage, progress_bar)
for model_name in all_model_names:
model_dir_path = RVC_MODELS_DIR / model_name
if model_dir_path.is_dir():
shutil.rmtree(model_dir_path)
|