HRVC / src /ultimate_rvc /web /tabs /manage_models.py
SpyC0der77's picture
Upload folder using huggingface_hub
1a942eb verified
"""Module which defines the code for the "Manage models" tab."""
from collections.abc import Sequence
from functools import partial
import gradio as gr
import pandas as pd
from ultimate_rvc.core.manage.models import (
delete_all_models,
delete_models,
download_model,
filter_public_models_table,
get_public_model_tags,
get_saved_model_names,
upload_model,
)
from ultimate_rvc.web.common import (
PROGRESS_BAR,
confirm_box_js,
confirmation_harness,
exception_harness,
render_msg,
update_dropdowns,
)
from ultimate_rvc.web.typing_extra import DropdownValue
def _update_models(
num_components: int,
value: DropdownValue = None,
value_indices: Sequence[int] = [],
) -> gr.Dropdown | tuple[gr.Dropdown, ...]:
"""
Update the choices of one or more dropdown components to the set of
currently saved voice models.
Optionally updates the default value of one or more of these
components.
Parameters
----------
num_components : int
Number of dropdown components to update.
value : DropdownValue, optional
New value for dropdown components.
value_indices : Sequence[int], default=[]
Indices of dropdown components to update the value for.
Returns
-------
gr.Dropdown | tuple[gr.Dropdown, ...]
Updated dropdown component or components.
"""
return update_dropdowns(get_saved_model_names, num_components, value, value_indices)
def _filter_public_models_table(tags: Sequence[str], query: str) -> gr.Dataframe:
"""
Filter table containing metadata of public voice models by tags and
a search query.
Parameters
----------
tags : Sequence[str]
Tags to filter the metadata table by.
query : str
Search query to filter the metadata table by.
Returns
-------
gr.Dataframe
The filtered table rendered in a Gradio dataframe.
"""
models_table = filter_public_models_table(tags, query)
return gr.Dataframe(value=models_table)
def _autofill_model_name_and_url(
public_models_table: pd.DataFrame,
select_event: gr.SelectData,
) -> tuple[gr.Textbox, gr.Textbox]:
"""
Autofill two textboxes with respectively the name and URL that is
saved in the currently selected row of the public models table.
Parameters
----------
public_models_table : pd.DataFrame
The public models table saved in a Pandas dataframe.
select_event : gr.SelectData
Event containing the index of the currently selected row in the
public models table.
Returns
-------
name : gr.Textbox
The textbox containing the model name.
url : gr.Textbox
The textbox containing the model URL.
Raises
------
TypeError
If the index in the provided event is not a sequence.
"""
event_index = select_event.index
if not isinstance(event_index, Sequence):
err_msg = (
f"Expected a sequence of indices but got {type(event_index)} from the"
" provided event."
)
raise TypeError(err_msg)
event_index = event_index[0]
url = public_models_table.loc[event_index, "URL"]
name = public_models_table.loc[event_index, "Name"]
if isinstance(url, str) and isinstance(name, str):
return gr.Textbox(value=name), gr.Textbox(value=url)
err_msg = (
"Expected model name and URL to be strings but got"
f" {type(name)} and {type(url)} respectively."
)
raise TypeError(err_msg)
def render(
model_delete: gr.Dropdown,
model_1click: gr.Dropdown,
model_multi: gr.Dropdown,
) -> None:
"""
Render "Manage models" tab.
Parameters
----------
model_delete : gr.Dropdown
Dropdown for selecting voice models to delete in the
"Delete models" tab.
model_1click : gr.Dropdown
Dropdown for selecting a voice model to use in the
"One-click generation" tab.
model_multi : gr.Dropdown
Dropdown for selecting a voice model to use in the
"Multi-step generation" tab.
"""
# Download tab
dummy_checkbox = gr.Checkbox(visible=False)
with gr.Tab("Download model"):
with gr.Accordion("View public models table", open=False):
gr.Markdown("")
gr.Markdown("*HOW TO USE*")
gr.Markdown(
"- Filter voice models by selecting one or more tags and/or providing a"
" search query.",
)
gr.Markdown(
"- Select a row in the table to autofill the name and"
" URL for the given voice model in the form fields below.",
)
gr.Markdown("")
with gr.Row():
search_query = gr.Textbox(label="Search query")
tags = gr.CheckboxGroup(
value=[],
label="Tags",
choices=get_public_model_tags(),
)
with gr.Row():
public_models_table = gr.Dataframe(
value=_filter_public_models_table,
inputs=[tags, search_query],
headers=["Name", "Description", "Tags", "Credit", "Added", "URL"],
label="Public models table",
interactive=False,
)
with gr.Row():
model_url = gr.Textbox(
label="Model URL",
info=(
"Should point to a zip file containing a .pth model file and"
" optionally also an .index file."
),
)
model_name = gr.Textbox(
label="Model name",
info="Enter a unique name for the voice model.",
)
with gr.Row(equal_height=True):
download_btn = gr.Button("Download 🌐", variant="primary", scale=19)
download_msg = gr.Textbox(
label="Output message",
interactive=False,
scale=20,
)
public_models_table.select(
_autofill_model_name_and_url,
inputs=public_models_table,
outputs=[model_name, model_url],
show_progress="hidden",
)
download_btn_click = download_btn.click(
partial(
exception_harness(download_model),
progress_bar=PROGRESS_BAR,
),
inputs=[model_url, model_name],
outputs=download_msg,
).success(
partial(
render_msg,
"[+] Succesfully downloaded voice model!",
),
inputs=model_name,
outputs=download_msg,
show_progress="hidden",
)
# Upload tab
with gr.Tab("Upload model"):
with gr.Accordion("HOW TO USE"):
gr.Markdown("")
gr.Markdown(
"1. Find the .pth file for a locally trained RVC model (e.g. in your"
" local weights folder) and optionally also a corresponding .index file"
" (e.g. in your logs/[name] folder)",
)
gr.Markdown(
"2. Upload the files directly or save them to a folder, then compress"
" that folder and upload the resulting .zip file",
)
gr.Markdown("3. Enter a unique name for the uploaded model")
gr.Markdown("4. Click 'Upload'")
with gr.Row():
model_files = gr.File(
label="Files",
file_count="multiple",
file_types=[".zip", ".pth", ".index"],
)
local_model_name = gr.Textbox(label="Model name")
with gr.Row(equal_height=True):
upload_btn = gr.Button("Upload", variant="primary", scale=19)
upload_msg = gr.Textbox(
label="Output message",
interactive=False,
scale=20,
)
upload_btn_click = upload_btn.click(
partial(exception_harness(upload_model), progress_bar=PROGRESS_BAR),
inputs=[model_files, local_model_name],
outputs=upload_msg,
).success(
partial(
render_msg,
"[+] Successfully uploaded voice model!",
),
inputs=local_model_name,
outputs=upload_msg,
show_progress="hidden",
)
with gr.Tab("Delete models"):
with gr.Row():
with gr.Column():
model_delete.render()
delete_btn = gr.Button("Delete selected", variant="secondary")
delete_all_btn = gr.Button("Delete all", variant="primary")
with gr.Column():
delete_msg = gr.Textbox(label="Output message", interactive=False)
delete_btn_click = delete_btn.click(
partial(confirmation_harness(delete_models), progress_bar=PROGRESS_BAR),
inputs=[dummy_checkbox, model_delete],
outputs=delete_msg,
js=confirm_box_js(
"Are you sure you want to delete the selected voice models?",
),
).success(
partial(render_msg, "[-] Successfully deleted selected voice models!"),
outputs=delete_msg,
show_progress="hidden",
)
delete_all_btn_click = delete_all_btn.click(
partial(
confirmation_harness(delete_all_models),
progress_bar=PROGRESS_BAR,
),
inputs=dummy_checkbox,
outputs=delete_msg,
js=confirm_box_js("Are you sure you want to delete all voice models?"),
).success(
partial(render_msg, "[-] Successfully deleted all voice models!"),
outputs=delete_msg,
show_progress="hidden",
)
for click_event in [
download_btn_click,
upload_btn_click,
delete_btn_click,
delete_all_btn_click,
]:
click_event.success(
partial(_update_models, 3, [], [2]),
outputs=[model_1click, model_multi, model_delete],
show_progress="hidden",
)