Spaces:
Sleeping
Sleeping
# import gradio as gr | |
# from huggingface_hub import InferenceClient | |
# import pandas as pd | |
# """ | |
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
# """ | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# ################################################################ | |
# # Load your CSV file | |
# df = pd.read_csv("your_file.csv") | |
# # Create dropdowns for exam name, year, and problem number | |
# exam_names = df["exam name"].unique() | |
# year_options = df["year"].unique() | |
# problem_numbers = df["problem number"].unique() | |
# exam_dropdown = gr.Dropdown(exam_names, label="Exam Name") | |
# year_dropdown = gr.Dropdown(year_options, label="Year") | |
# problem_dropdown = gr.Dropdown(problem_numbers, label="Problem Number") | |
# # Define the functions for the three buttons | |
# def solve_problem(exam, year, problem): | |
# problem_statement = df[(df["exam name"] == exam) & (df["year"] == year) & (df["problem number"] == problem)]["problem statement"].values[0] | |
# prompt = f"Solve the following problem: {problem_statement}" | |
# response = client.chat_completion(prompt, max_tokens=512, temperature=0.7, top_p=0.95) | |
# return response.choices[0].text | |
# def give_hints(exam, year, problem): | |
# problem_statement = df[(df["exam name"] == exam) & (df["year"] == year) & (df["problem number"] == problem)]["problem statement"].values[0] | |
# prompt = f"Give hints for the following problem: {problem_statement}" | |
# response = client.chat_completion(prompt, max_tokens=512, temperature=0.7, top_p=0.95) | |
# return response.choices[0].text | |
# def create_similar_problem(exam, year, problem): | |
# problem_statement = df[(df["exam name"] == exam) & (df["year"] == year) & (df["problem number"] == problem)]["problem statement"].values[0] | |
# prompt = f"Create a similar problem to the following one: {problem_statement}" | |
# response = client.chat_completion(prompt, max_tokens=512, temperature=0.7, top_p=0.95) | |
# return response.choices[0].text | |
# ################################################################ | |
# def respond( | |
# message, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
# ): | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
# """ | |
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
# """ | |
# demo = gr.ChatInterface( | |
# respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
# ) | |
# ################################################################ | |
# # Create Gradio interface with Blocks context | |
# with gr.Blocks() as dropdown_interface: | |
# with gr.Column(): | |
# exam_dropdown.render() | |
# year_dropdown.render() | |
# problem_dropdown.render() | |
# solve_button = gr.Button("Solve Problem") | |
# hints_button = gr.Button("Give Hints") | |
# similar_problem_button = gr.Button("Create Similar Problem") | |
# output_text = gr.Textbox(label="Output") | |
# solve_button.click(solve_problem, inputs=[exam_dropdown, year_dropdown, problem_dropdown], outputs=output_text) | |
# hints_button.click(give_hints, inputs=[exam_dropdown, year_dropdown, problem_dropdown], outputs=output_text) | |
# similar_problem_button.click(create_similar_problem, inputs=[exam_dropdown, year_dropdown, problem_dropdown], outputs=output_text) | |
# ################################################################ | |
# # Combine both interfaces into a tabbed layout | |
# tabbed_interface = gr.TabbedInterface( | |
# [dropdown_interface, demo], | |
# ["Problem Solver", "Chat Interface"] | |
# ) | |
# ################################################################ | |
# # Launch the app | |
# if __name__ == "__main__": | |
# tabbed_interface.launch() | |
import pandas as pd | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
# Initialize the InferenceClient | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# Load your CSV file | |
df = pd.read_csv("your_file.csv") | |
# Create dropdowns for exam name, year, and problem number | |
exam_names = df["exam name"].unique() | |
year_options = df["year"].unique() | |
problem_numbers = df["problem number"].unique() | |
exam_dropdown = gr.Dropdown(exam_names, label="Exam Name") | |
year_dropdown = gr.Dropdown(year_options, label="Year") | |
problem_dropdown = gr.Dropdown(problem_numbers, label="Problem Number") | |
# Define the functions for the three buttons | |
def solve_problem(exam, year, problem): | |
problem_statement = df[(df["exam name"] == exam) & (df["year"] == year) & (df["problem number"] == problem)]["problem statement"].values[0] | |
prompt = f"Solve the following problem: {problem_statement}" | |
response = client.text_generation(prompt, max_new_tokens=512, temperature=0.7, top_p=0.95, model = "HuggingFaceH4/zephyr-7b-beta") | |
return response[0]['generated_text'] | |
def give_hints(exam, year, problem): | |
problem_statement = df[(df["exam name"] == exam) & (df["year"] == year) & (df["problem number"] == problem)]["problem statement"].values[0] | |
prompt = f"Give hints for the following problem: {problem_statement}" | |
response = client.text_generation(prompt, max_new_tokens=512, temperature=0.7, top_p=0.95, model = "HuggingFaceH4/zephyr-7b-beta") | |
return response[0]['generated_text'] | |
def create_similar_problem(exam, year, problem): | |
problem_statement = df[(df["exam name"] == exam) & (df["year"] == year) & (df["problem number"] == problem)]["problem statement"].values[0] | |
prompt = f"Create a similar problem to the following one: {problem_statement}" | |
response = client.text_generation(prompt, max_new_tokens=512, temperature=0.7, top_p=0.95, model = "HuggingFaceH4/zephyr-7b-beta") | |
return response[0]['generated_text'] | |
# Define the chat response function | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
# Create Gradio interface with Blocks context | |
with gr.Blocks() as dropdown_interface: | |
with gr.Column(): | |
exam_dropdown.render() | |
year_dropdown.render() | |
problem_dropdown.render() | |
solve_button = gr.Button("Solve Problem") | |
hints_button = gr.Button("Give Hints") | |
similar_problem_button = gr.Button("Create Similar Problem") | |
output_text = gr.Textbox(label="Output") | |
solve_button.click(solve_problem, inputs=[exam_dropdown, year_dropdown, problem_dropdown], outputs=output_text) | |
hints_button.click(give_hints, inputs=[exam_dropdown, year_dropdown, problem_dropdown], outputs=output_text) | |
similar_problem_button.click(create_similar_problem, inputs=[exam_dropdown, year_dropdown, problem_dropdown], outputs=output_text) | |
chat_interface = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
# Combine both interfaces into a tabbed layout | |
tabbed_interface = gr.TabbedInterface( | |
[dropdown_interface, chat_interface], | |
["Problem Solver", "Chat Interface"] | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
tabbed_interface.launch() | |